Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 7(336): ra71, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25074979

RESUMO

Sirtuin 6 (SIRT6) is associated with longevity and is also a tumor suppressor. Identification of molecular regulators of SIRT6 might enable its activation therapeutically in cancer patients. In various breast cancer cell lines, we found that SIRT6 was phosphorylated at Ser(338) by the kinase AKT1, which induced the interaction and ubiquitination of SIRT6 by MDM2, targeting SIRT6 for protease-dependent degradation. The survival of breast cancer patients positively correlated with the abundance of SIRT6 and inversely correlated with the phosphorylation of SIRT6 at Ser(338). In a panel of breast tumor biopsies, SIRT6 abundance inversely correlated with the abundance of phosphorylated AKT. Inhibiting AKT or preventing SIRT6 phosphorylation by mutating Ser(338) prevented the degradation of SIRT6 mediated by MDM2, suppressed the proliferation of breast cancer cells in culture, and inhibited the growth of breast tumor xenografts in mice. Overexpressing MDM2 decreased the abundance of SIRT6 in cells, whereas overexpressing an E3 ligase-deficient MDM2 or knocking down endogenous MDM2 increased SIRT6 abundance. Trastuzumab (known as Herceptin) is a drug that targets a specific receptor common in some breast cancers, and knocking down SIRT6 increased the survival of a breast cancer cell exposed to trastuzumab. Overexpression of a nonphosphorylatable SIRT6 mutant increased trastuzumab sensitivity in a resistant breast cancer cell line. Thus, stabilizing SIRT6 may be a clinical strategy for overcoming trastuzumab resistance in breast cancer patients.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Sirtuínas/metabolismo , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Células HeLa , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Transgênicos , Fosforilação , Trastuzumab
2.
Phys Biol ; 8(1): 015015, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21301068

RESUMO

Mechanical forces have a major influence on cell migration and are predicted to significantly impact cancer metastasis, yet this idea is currently poorly defined. In this study we have asked if changes in traction stress and migratory properties correlate with the metastatic progression of tumor cells. For this purpose, four murine breast cancer cell lines derived from the same primary tumor, but possessing increasing metastatic capacity, were tested for adhesion strength, traction stress, focal adhesion organization and for differential migration rates in two-dimensional and three-dimensional environments. Using traction force microscopy (TFM), we were surprised to find an inverse relationship between traction stress and metastatic capacity, such that force production decreased as the metastatic capacity increased. Consistent with this observation, adhesion strength exhibited an identical profile to the traction data. A count of adhesions indicated a general reduction in the number as metastatic capacity increased but no difference in the maturation as determined by the ratio of nascent to mature adhesions. These changes correlated well with a reduction in active beta-1 integrin with increasing metastatic ability. Finally, in two dimensions, wound healing, migration and persistence were relatively low in the entire panel, maintaining a downward trend with increasing metastatic capacity. Why metastatic cells would migrate so poorly prompted us to ask if the loss of adhesive parameters in the most metastatic cells indicated a switch to a less adhesive mode of migration that would only be detected in a three-dimensional environment. Indeed, in three-dimensional migration assays, the most metastatic cells now showed the greatest linear speed. We conclude that traction stress, adhesion strength and rate of migration do indeed change as tumor cells progress in metastatic capacity and do so in a dimension-sensitive manner.


Assuntos
Neoplasias da Mama/secundário , Estresse Mecânico , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Feminino , Adesões Focais/metabolismo , Adesões Focais/patologia , Integrinas/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA