Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Diabetes Sci Technol ; 5(5): 1167-75, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22027312

RESUMO

BACKGROUND: It has been demonstrated that dynamic electrochemistry can be used to correct blood glucose measurement results for potentially interfering conditions, such as humidity, hematocrit (HCT) variations, and ascorbic acid. The purpose of this laboratory investigation was to assess the potential influence of hematocrit variations on a variety of blood glucose meters applying different measurement technologies. METHODS: Venous heparinized whole blood was drawn, immediately aliquoted, and manipulated to contain three different blood glucose concentrations (80, 155, and 310 mg/dl) and five different hematocrit levels (25%, 37%, 45%, 52%, and 60%). After careful oxygenation to normal blood oxygen pressure, each of the resulting 15 different samples was measured 8 times with the following devices: BGStar, Contour, Accu-Chek Aviva, Accu-Chek Aviva Nano, Breeze 2, Precision Xceed, OneTouch Ultra 2, OneTouch Verio, FreeStyle Freedom Lite, Glucocard G+, GlucoMen LX, GlucoMen GM, and StatStrip [point-of-care (POC) device]. Cobas (Roche Diagnostics, glucose hexokinase method) served as laboratory plasma reference method. Stability to hematocrit influence was assumed when less than 10% bias occurred between the highest and lowest hematocrit levels when analyzing mean deviations for all three glucose concentrations. RESULTS: Besides the POC StatStrip device, which is known to measure and correct for hematocrit (resulting in <2% bias), four self-test meters also showed a stable performance in this investigation: dynamic electrochemistry, BGStar (8%), and static electrochemistry, Contour (6%), Glucocard G+ (2%), and OneTouch Verio (6%). The other meters failed this test: colorimetry, FreeStyle Freedom Lite (16%), and static electrochemistry, Accu-Chek Aviva (23%), Accu-Chek Aviva Nano (18%), Breeze 2 (36%), OneTouch Ultra 2 (34%), Precision Xceed (34%), GlucoMen LX (24%), and GlucoMen GM (31%). CONCLUSIONS: As hematocrit variations occur in daily routine (e.g., because of smoking, exercise, hypermenorrhea, pregnancy, stay in mountains, and hemodialysis), our results may encourage use of meters with stable performance under these conditions. Dynamic electrochemistry as used in the BGStar device (sanofi-aventis) appears to be an effective technology to correct for potential hematocrit influence on the meter results.


Assuntos
Automonitorização da Glicemia/instrumentação , Glicemia/análise , Técnicas Eletroquímicas/instrumentação , Automonitorização da Glicemia/métodos , Técnicas Eletroquímicas/métodos , Hematócrito , Humanos
2.
J Biol Chem ; 281(39): 29297-308, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16867982

RESUMO

Hepatitis B virus (HBV) budding from infected cells is a tightly regulated process that requires both core and envelope structures. Here we report that HBV uses cellular gamma2-adaptin and Nedd4, possibly in conjunction with ubiquitin, to coordinate its assembly and release. In search of interaction partners of the viral L envelope protein, we previously discovered gamma2-adaptin, a putative endosomal sorting and trafficking adaptor of the adaptor protein complex family. We now demonstrate that the viral core interacts with the same gamma2-adaptor and that disruption of the HBV/gamma2-adaptin interactions inhibits virus production. Mutational analyses revealed a hitherto unknown ubiquitin-binding activity of gamma2-adaptin, specified by a ubiquitin-interacting motif, which contributes to its interaction with core. For core, the lysine residue at position 96, a potential target for ubiquitination, was identified to be essential for both gamma2-adaptin-recognition and virus production. The participation of the cellular ubiquitin system in HBV assembly was further suggested by our finding that core interacts with the endosomal ubiquitin ligase Nedd4, partly via its late domain-like PPAY sequence. Overexpression of a catalytically inactive Nedd4 mutant diminished HBV egress, indicating that protein ubiquitination is functionally involved in virus production. Additional evidence for a link of HBV assembly to the endosomal machinery was provided by immunolabeling studies that demonstrated colocalization of core and L with gamma2-adaptin in compartments positive for the late endosomal marker CD63. Together, these data indicate that an enveloped DNA virus exploits a new ubiquitin receptor together with endosomal pathway functions for egress from hepatocytes.


Assuntos
Subunidades gama do Complexo de Proteínas Adaptadoras/química , Vírus da Hepatite B/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina/química , Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo , Sequência de Aminoácidos , Antígenos CD/biossíntese , Catálise , DNA/química , Complexos Endossomais de Distribuição Requeridos para Transporte , Humanos , Lisina/química , Dados de Sequência Molecular , Ubiquitina-Proteína Ligases Nedd4 , Glicoproteínas da Membrana de Plaquetas/biossíntese , Conformação Proteica , Homologia de Sequência de Aminoácidos , Tetraspanina 30 , Transfecção
3.
Virology ; 330(1): 158-67, 2004 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-15527842

RESUMO

The envelope of hepatitis B virus (HBV), containing the L, M, and S proteins, is essential for virus entry and maturation. For direct visualization of HBV, we determined whether envelope assembly could accommodate the green fluorescent protein (GFP). While the C-terminal addition of GFP to S trans-dominant negatively inhibited empty envelope particle secretion, the N-terminal GFP fusion to S (GFP.S) was co-integrated into the envelope, giving rise to fluorescent particles. Microscopy and topogenesis analyses demonstrated that the proper intracellular distribution and folding of GFP.S, required for particle export were rescued by interprotein interactions with wild-type S. Thereby, a dual location of GFP, inside and outside the envelope, was observed. GFP.S was also efficiently packaged into the viral envelope, and these GFP-tagged virions retained the capacity for attachment to HBV receptor-positive cells in vitro. Together, GFP-tagged virions should be suitable to monitor HBV uptake and egress in live hepatocytes.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Vírus da Hepatite B/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Células COS , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática , Proteínas de Fluorescência Verde/genética , Humanos , Cinética , Metalotioneína/genética , Regiões Promotoras Genéticas , Proteínas Quinases , Proteínas Recombinantes de Fusão/metabolismo , Mapeamento por Restrição , Transfecção , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA