Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 14(10): 4076-4089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994029

RESUMO

Metastatic tumours in the brain now represent one of the leading causes of death from cancer. Current treatments are largely ineffective owing to the combination of late diagnosis and poor delivery of therapies across the blood-brain barrier (BBB). Conjugating magnetic resonance imaging (MRI) contrast agents with a monoclonal antibody for VCAM-1 (anti-VCAM1) has been shown to enable detection of micrometastases, two to three orders of magnitude smaller in volume than those currently detectable clinically. The aim of this study was to exploit this targeting approach to enable localised and temporary BBB opening at the site of early-stage metastases using functionalised microbubbles and ultrasound. Methods: Microbubbles functionalised with anti-VCAM1 were synthesised and shown to bind to VCAM-1-expressing cells in vitro. Experiments were then conducted in vivo in a unilateral breast cancer brain metastasis mouse model using Gadolinium-DTPA (Gd-DTPA) enhanced MRI to detect BBB opening. Following injection of Gd-DTPA and targeted microbubbles, the whole brain volume was simultaneously exposed to ultrasound (0.5 MHz, 10% duty cycle, 0.7 MPa peak negative pressure, 2 min treatment time). T1-weighted MRI was then performed to identify BBB opening, followed by histological confirmation via immunoglobulin G (IgG) immunohistochemistry. Results: In mice treated with targeted microbubbles and ultrasound, statistically significantly greater extravasation of Gd-DTPA and IgG was observed in the left tumour-bearing hemisphere compared to the right hemisphere 5 min after treatment. No acute adverse effects were observed. There was no investigation of longer term bioeffects owing to the nature of the study. Conclusion: The results demonstrate the feasibility of using targeted microbubbles in combination with low intensity ultrasound to localise opening of the BBB to metastatic sites in the brain. This approach has potential application in the treatment of metastatic tumours whose location cannot be established a priori with conventional imaging methods.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Microbolhas , Molécula 1 de Adesão de Célula Vascular , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Camundongos , Neoplasias Encefálicas/diagnóstico por imagem , Molécula 1 de Adesão de Célula Vascular/metabolismo , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Feminino , Modelos Animais de Doenças , Ultrassonografia/métodos , Linhagem Celular Tumoral , Gadolínio DTPA/administração & dosagem , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-35709116

RESUMO

Advances in magnetic materials have enabled the development of new therapeutic agents that can be localized by external magnetic fields. These agents offer a potential means of improving treatment targeting and reducing the toxicity-related side effects associated with systemic delivery. Achieving sufficiently high magnetic fields at clinically relevant depths in vivo, however, remains a challenge. Similarly, there is a need for techniques for real-time monitoring that do not rely on magnetic resonance imaging (MRI). Here, we present a hand-held device to meet these requirements, combining an array of permanent magnets and a thin 64-element capacitive micromachined ultrasonic transducer (CMUT) interfaced to a real-time imaging system. Drug carrier localization was assessed by measuring the terminal velocity of magnetic microbubbles in a column of fluid above the magnetic array. It was found that the magnetic pull force was sufficient to overcome buoyancy at equivalent tissue depths of at least 35 mm and that the median terminal velocity ranged from 0.7 to 20 [Formula: see text]/s over the distances measured. A Monte Carlo study was performed to estimate capture effectiveness in tumor microvessels over a range of different tissue depths and flow rates. Finally, B-mode and contrast-enhanced ultrasound (CEUS) imaging were demonstrated using a gel flow phantom containing a 1.6-mm diameter vessel. Real-time monitoring provided visual confirmation of retention of magnetic microbubbles along the vessel wall at a flow rate of 0.5 mL/min. These results indicate that the system can successfully retain and image magnetic microbubbles at tissue depths and flow rates relevant for clinical applications such as molecular ultrasound imaging of atherosclerosis, sonodynamic and antimetabolite cancer therapy, and clot dissolution via sonothrombolysis.


Assuntos
Microbolhas , Transdutores , Imagens de Fantasmas , Ultrassom , Ultrassonografia/métodos
3.
J Clin Endocrinol Metab ; 106(12): 3385-3397, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33739426

RESUMO

CONTEXT: The adrenal cortex produces specific steroid hormones including steroid sulfates such as dehydroepiandrosterone sulfate (DHEAS), the most abundant steroid hormone in the human circulation. Steroid sulfation involves a multistep enzyme machinery that may be impaired by inborn errors of steroid metabolism. Emerging data suggest a role of steroid sulfates in the pathophysiology of adrenal tumors and as potential biomarkers. EVIDENCE ACQUISITION: Selective literature search using "steroid," "sulfat*," "adrenal," "transport," "mass spectrometry" and related terms in different combinations. EVIDENCE SYNTHESIS: A recent study highlighted the tissue abundance of estrogen sulfates to be of prognostic impact in adrenocortical carcinoma tissue samples using matrix-assisted laser desorption ionization mass spectrometry imaging. General mechanisms of sulfate uptake, activation, and transfer to substrate steroids are reasonably well understood. Key aspects of this pathway, however, have not been investigated in detail in the adrenal; these include the regulation of substrate specificity and the secretion of sulfated steroids. Both for the adrenal and targeted peripheral tissues, steroid sulfates may have relevant biological actions beyond their cognate nuclear receptors after desulfation. Impaired steroid sulfation such as low DHEAS in Cushing adenomas is of diagnostic utility, but more comprehensive studies are lacking. In bioanalytics, the requirement of deconjugation for gas-chromatography/mass-spectrometry has precluded the study of steroid sulfates for a long time. This limitation may be overcome by liquid chromatography/tandem mass spectrometry. CONCLUSIONS: A role of steroid sulfation in the pathophysiology of adrenal tumors has been suggested and a diagnostic utility of steroid sulfates as biomarkers is likely. Recent analytical developments may target sulfated steroids specifically.


Assuntos
Neoplasias das Glândulas Suprarrenais/patologia , Carcinoma Adrenocortical/patologia , Esteroides/química , Sulfatos/química , Sulfotransferases/metabolismo , Neoplasias das Glândulas Suprarrenais/metabolismo , Carcinoma Adrenocortical/metabolismo , Animais , Humanos , Esteroides/metabolismo , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA