Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 108(5): 536-550, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509331

RESUMO

Enteropathogenic Escherichia coli (EPEC) use a type 3 secretion system (T3SS) for injection of effectors into host cells and intestinal colonization. Here, we demonstrate that the multicargo chaperone CesT has two strictly conserved tyrosine phosphosites, Y152 and Y153 that regulate differential effector secretion in EPEC. Conservative substitution of both tyrosine residues to phenylalanine strongly attenuated EPEC type 3 effector injection into host cells, and limited Tir effector mediated intimate adherence during infection. EPEC expressing a CesT Y152F variant were deficient for NleA effector expression and exhibited significantly reduced translocation of NleA into host cells during infection. Other effectors were observed to be dependent on CesT Y152 for maximal translocation efficiency. Unexpectedly, EPEC expressing a CesT Y153F variant exhibited significantly enhanced effector translocation of many CesT-interacting effectors, further implicating phosphosites Y152 and Y153 in CesT functionality. A mouse infection model of intestinal disease using Citrobacter rodentium revealed that CesT tyrosine substitution variants displayed delayed colonization and were more rapidly cleared from the intestine. These data demonstrate genetically separable functions for tandem tyrosine phosphosites within CesT. Therefore, CesT via its C-terminal tyrosine phosphosites, has relevant roles beyond typical type III secretion chaperones that interact and stabilize effector proteins.


Assuntos
Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Organofosfatos/metabolismo , Polímeros/metabolismo , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Escherichia coli Enteropatogênica/genética , Escherichia coli O157 , Proteínas de Escherichia coli/genética , Feminino , Células HeLa , Humanos , Enteropatias/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/genética , Tirosina/genética , Virulência/genética , Fatores de Virulência/genética
2.
Inflamm Bowel Dis ; 22(12): 2853-2862, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27805918

RESUMO

BACKGROUND: Clinical remission achieved by exclusive enteral nutrition (EEN) is associated with marked microbiome changes. In this prospective study of exclusive enteral nutrition, we employ a hierarchical model of microbial community structure to distinguish between pediatric Crohn's disease patients who achieved sustained remission (SR) and those who relapsed early (non-SR), after restarting a normal diet. METHODS: Fecal samples were obtained from 10 patients (age 10-16) and from 5 healthy controls (age 9-14). The microbiota was assessed via 16S rRNA sequencing. In addition to standard measures of microbial biodiversity, we employed Bayesian methods to characterize the hierarchical community structure. Community structure between patients who sustained remission (wPCDAI <12.5) up to their 24-week follow-up (SR) was compared with patients that had not sustained remission (non-SR). RESULTS: Microbial diversity was lower in Crohn's disease patients relative to controls and lowest in patients who did not achieve SR. SR patients differed from non-SR patients in terms of the structure and prevalence of their microbial communities. The SR prevalent community contained a number of strains of Akkermansia muciniphila and Bacteroides and was limited in Proteobacteria, whereas the non-SR prevalent community had a large Proteobacteria component. Their communities were so different that a model trained to discriminate SR and non-SR had 80% classification accuracy, already at baseline sampling. CONCLUSIONS: Microbial community structure differs between healthy controls, patients who have an enduring response to exclusive enteral nutrition, and those who relapse early on introduction of normal diet. Our novel Bayesian approach to these differences is able to predict sustained remission after exclusive enteral nutrition.


Assuntos
Doença de Crohn/microbiologia , Doença de Crohn/terapia , Nutrição Enteral/métodos , Fezes/microbiologia , Microbiota , Adolescente , Teorema de Bayes , Estudos de Casos e Controles , Criança , Feminino , Seguimentos , Humanos , Masculino , Estudos Prospectivos , RNA Ribossômico 16S , Recidiva , Indução de Remissão/métodos , Fatores de Tempo , Resultado do Tratamento
3.
Inflamm Bowel Dis ; 22(11): 2607-2618, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27760077

RESUMO

BACKGROUND: Exclusive enteral nutrition (EEN) is a first-line therapy in pediatric Crohn's disease (CD) thought to induce remission through changes in the gut microbiome. With microbiome assessment largely focused on microbial taxonomy and diversity, it remains unclear to what extent EEN induces functional changes that thereby contribute to its therapeutic effect. METHODS: Fecal samples were collected from 15 pediatric CD patients prior to and after EEN treatment, as well as from 5 healthy controls. Metagenomic data were obtained via next-generation sequencing, and nonhuman reads were mapped to KEGG pathways, where possible. Pathway abundance was compared between CD patients and controls, and between CD patients that sustained remission (SR) and those that did not sustain remission (NSR). RESULTS: Of 132 KEGG pathways identified, 8 pathways differed significantly between baseline CD patients and controls. Examination of these eight pathways showed SR patients had greater similarity to controls than NSR patients in all cases. Pathways fell into one of three groups: 1) no prior connection to IBD, 2) previously reported connection to IBD, and 3) known roles in innate immunity and immunoregulation. CONCLUSIONS: The microbiota of CD patients and controls represent alternative ecological states that have broad differences in functional capabilities, including xenobiotic and environmental pollutant degradation, succinate metavolism, and bacterial HtpG, all of which can affect barrier integrity and immune regulation. Moreover, our finding that SR patients were more similar to healthy controls suggests that community microbial function, as inferred from fecal microbiomes, could serve as a valuable diagnostic tool.


Assuntos
Doença de Crohn/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Adolescente , Estudos de Casos e Controles , Criança , Doença de Crohn/imunologia , Doença de Crohn/terapia , Feminino , Humanos , Imunidade Inata , Masculino , Metagenômica , Indução de Remissão
4.
J Immunol ; 194(7): 3414-21, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25725105

RESUMO

Citrobacter rodentium is an attaching and effacing mouse pathogen that models enteropathogenic and enterohemorrhagic Escherichia coli in humans. The complement system is an important innate defense mechanism; however, only scant information is available about the role of complement proteins during enteric infections. In this study, we examined the impact of the lack of properdin, a positive regulator of complement, in C. rodentium-induced colitis. Following infection, properdin knockout (P(KO)) mice had increased diarrhea and exacerbated inflammation combined with defective epithelial cell-derived IL-6 and greater numbers of colonizing bacteria. The defect in the mucosal response was reversed by administering exogenous properdin to P(KO) mice. Then, using in vitro and in vivo approaches, we show that the mechanism behind the exacerbated inflammation of P(KO) mice is due to a failure to increase local C5a levels. We show that C5a directly stimulates IL-6 production from colonic epithelial cells and that inhibiting C5a in infected wild-type mice resulted in defective epithelial IL-6 production and exacerbated inflammation. These outcomes position properdin early in the response to an infectious challenge in the colon, leading to complement activation and C5a, which in turn provides protection through IL-6 expression by the epithelium. Our results unveil a previously unappreciated mechanism of intestinal homeostasis involving complement, C5a, and IL-6 during bacteria-triggered epithelial injury.


Assuntos
Citrobacter rodentium/imunologia , Complemento C5a/imunologia , Enterite/etiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/metabolismo , Interleucina-6/metabolismo , Properdina/imunologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Properdina/genética
5.
Mol Cell Probes ; 28(2-3): 83-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24486296

RESUMO

Enteropathogenic Escherichia coli, or EPEC, is a human pathogen associated with gastroenteritis and diarrheal disease whose pathogenicity is related to the secretion of effector proteins (exotoxins). Determining exotoxin expression level is of considerable interest to those studying toxin function and pathological phenotypes. Mass spectrometry (MS) provides an ideal platform for detection and quantification of proteins from complex mixtures. Here, we apply a solution-phase electrophoretic platform (GELFrEE) followed by MS to characterize the secreted proteome of a wild type and mutant strain of EPEC (ΔsepD), exhibiting enhanced secretion of effector proteins. Through peptide-level analysis, a total of 363 and 155 proteins were identified from the wild type and mutant strains, respectively. Semi-quantitative analysis of the MS data reveals the effector proteins EspB, EspC, and EspD appear in a relatively greater abundance from wild type EPEC, while two major virulence factors in EPEC, Tir and NleA appear in greater abundance from the secreted proteome of the mutant strain. Additionally, intact proteins may further be characterized following GELFrEE with MS to improve throughput of analysis. This study demonstrates the application of GELFrEE-MS to differentiate wild type and mutant strains of EPEC. This platform is therefore a powerful tool to study exotoxin secretion from pathogenic bacteria.


Assuntos
Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/isolamento & purificação , Exotoxinas/isolamento & purificação , Peptídeos/análise , Bases de Dados Genéticas , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/genética , Exotoxinas/genética , Humanos , Espectrometria de Massas/métodos , Mutação , Proteoma/análise , Proteoma/isolamento & purificação , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação
6.
J Bacteriol ; 195(4): 740-56, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23222727

RESUMO

The enteropathogenic Escherichia coli (EPEC) multicargo chaperone CesT interacts with at least 10 effector proteins and is central to pathogenesis. CesT has been implicated in coordinating effector hierarchy, although the mechanisms behind this regulation are poorly understood. To address this question, we set out to functionally characterize CesT with respect to roles in (i) effector binding, (ii) effector recruitment to the type III secretion system (T3SS), and (iii) effector translocation into host cells. A CesT variant expression library was screened in EPEC using a newly developed semi-high-throughput secretion assay. Among many deficient CesT variants, a predominant number were localized to a novel CesT C-terminal region. These CesT C-terminal variants exhibited normal effector binding yet reduced effector secretion levels. Structural correlation and thermal spectroscopy analyses of purified CesT variants implicated multiple surface-exposed residues, a terminal helix region, and a flexible C-terminal triple-serine stretch in effector secretion. Site-directed mutagenesis of the flexible CesT C-terminal triple-serine sequence produced differential effector secretion, implicating this region in secretion events. Infection assays further indicated that the C-terminal region of CesT was important for NleA translocation into host cells but was dispensable for Tir translocation. The findings implicate the CesT C terminus in effector secretion and contribute to a model for multiple-cargo chaperone function and effector translocation into host cells during infection.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Chaperonas Moleculares/metabolismo , Alelos , Substituição de Aminoácidos , Bacteriocinas , Biologia Computacional , DNA Bacteriano/genética , DNA Recombinante , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Variação Genética , Modelos Moleculares , Chaperonas Moleculares/genética , Mutagênese Sítio-Dirigida , Biblioteca de Peptídeos , Peptídeos , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência
7.
Microbiology (Reading) ; 158(Pt 9): 2246-2261, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22723287

RESUMO

The locus of enterocyte effacement (LEE) is a 35 kb pathogenicity island involved in attaching and effacing (A/E) Escherichia coli enteric infection. The LEE is organized into five large transcriptional operons (LEE1-LEE5) and a few bi- and monocistronic instances. The LEE5 operon co-transcribes three genes, tir-cesT-eae, although cesT can be transcribed in a separate mRNA from its own proximal promoter. The role of this separate promoter is not understood. In this study we characterized promoter activity for the type III secretion chaperone gene cesT. The cesT promoter, cesTp, has features consistent with σ(70) promoters that contain an extended -10 element. This was experimentally confirmed by mutations that altered cesTp activity. In stark contrast to LEE2-5 transcriptional operons, cesTp did not require the master regulator Ler for transcriptional activity. Moreover, cesTp activity was not dependent on the presence of GrlA or GrlR, two regulators associated with LEE gene expression. A cesTp-lux fusion was used in real-time assays and demonstrated initial cesTp activity that occurred before LEE5 promoter activity, which ensued after 120 min. cesTp was shown to be active during in vitro infection of HT-29 colonic epithelial cells. Inactivation of cesTp reduced CesT protein levels at early growth time points. These data indicate a Ler-, GrlA- and GrlR-independent activity for cesTp. We suggest that A/E pathogenic E. coli have evolved a mechanism to ready the cell for CesT protein expression in support of infection prior to Ler- and GrlA-related activities.


Assuntos
Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/biossíntese , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/biossíntese , Ativação Transcricional , Aderência Bacteriana , Linhagem Celular , Análise Mutacional de DNA , Células Epiteliais/microbiologia , Humanos , Regiões Promotoras Genéticas
8.
Mol Microbiol ; 57(6): 1762-79, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16135239

RESUMO

Enteropathogenic Escherichia coli (EPEC) is an intestinal attaching and effacing pathogen that utilizes a type III secretion system (T3SS) for the delivery of effectors into host cells. The chaperone CesT has been shown to bind and stabilize the type III translocated effectors Tir and Map in the bacterial cytoplasm prior to their delivery into host cells. In this study we demonstrate a role for CesT in effector recruitment to the membrane embedded T3SS. CesT-mediated effector recruitment was dependent on the presence of the T3SS membrane-associated ATPase EscN. EPEC DeltacesT carrying a C-terminal CesT variant, CesT(E142G), exhibited normal cytoplasmic Tir stability function, but was less efficient in secreting Tir, further implicating CesT in type III secretion. In vivo co-immunoprecipitation studies using CesT-FLAG containing EPEC lysates demonstrated that CesT interacts with Tir and EscN, consistent with the notion of CesT recruiting Tir to the T3SS. CesT was also shown to be required for the efficient secretion of several type III effectors encoded within and outside the locus of enterocyte effacement (LEE) in addition to Tir and Map. Furthermore, a CesT affinity column was shown to specifically retain multiple effector proteins from EPEC culture supernatants. These findings indicate that CesT is centrally involved in recruiting multiple type III effectors to the T3SS via EscN for efficient secretion, and functionally redefine the role of CesT in multiple type III effector interactions.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/metabolismo , Fosfoproteínas/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos/química , Fosfoproteínas/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA