Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gut ; 73(1): 175-185, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37918889

RESUMO

The gastrointestinal ecosystem has received the most attention when examining the contributions of the human microbiome to health and disease. This concentration of effort is logical due to the overwhelming abundance of microbes in the gut coupled with the relative ease of sampling compared with other organs. However, the intestines are intimately connected to multiple extraintestinal organs, providing an opportunity for homeostatic microbial colonisation and pathogenesis in organs traditionally thought to be sterile or only transiently harbouring microbiota. These habitats are challenging to sample, and their low microbial biomass among large amounts of host tissue can make study challenging. Nevertheless, recent findings have shown that many extraintestinal organs that are intimately linked to the gut harbour stable microbiomes, which are colonised from the gut in selective manners and have highlighted not just the influence of the bacteriome but that of the mycobiome and virome on oncogenesis and health.


Assuntos
Microbioma Gastrointestinal , Microbiota , Micobioma , Neoplasias , Humanos , Viroma , Neoplasias/etiologia
2.
mBio ; 13(1): e0007522, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35189698

RESUMO

Electronic cigarettes (e-cigs) have become prevalent as an alternative to conventional cigarette smoking, particularly in youth. E-cig aerosols contain unique chemicals which alter the oral microbiome and promote dysbiosis in ways we are just beginning to investigate. We conducted a 6-month longitudinal study involving 84 subjects who were either e-cig users, conventional smokers, or nonsmokers. Periodontal condition, cytokine levels, and subgingival microbial community composition were assessed, with periodontal, clinical, and cytokine measures reflecting cohort habit and positively correlating with pathogenic taxa (e.g., Treponema, Saccharibacteria, and Porphyromonas). α-Diversity increased similarly across cohorts longitudinally, yet each cohort maintained a unique microbiome. The e-cig microbiome shared many characteristics with the microbiome of conventional smokers and some with nonsmokers, yet it maintained a unique subgingival microbial community enriched in Fusobacterium and Bacteroidales (G-2). Our data suggest that e-cig use promotes a unique periodontal microbiome, existing as a stable heterogeneous state between those of conventional smokers and nonsmokers and presenting unique oral health challenges. IMPORTANCE Electronic cigarette (e-cig) use is gaining in popularity and is often perceived as a healthier alternative to conventional smoking. Yet there is little evidence of the effects of long-term use of e-cigs on oral health. Conventional cigarette smoking is a prominent risk factor for the development of periodontitis, an oral disease affecting nearly half of adults over 30 years of age in the United States. Periodontitis is initiated through a disturbance in the microbial biofilm communities inhabiting the unique space between teeth and gingival tissues. This disturbance instigates host inflammatory and immune responses and, if left untreated, leads to tooth and bone loss and systemic diseases. We found that the e-cig user's periodontal microbiome is unique, eliciting unique host responses. Yet some similarities to the microbiomes of both conventional smokers and nonsmokers exist, with strikingly more in common with that of cigarette smokers, suggesting that there is a unique periodontal risk associated with e-cig use.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Microbiota , Periodonto , Vaping , Adulto , Citocinas , Humanos , Estudos Longitudinais , Periodontite , Periodonto/microbiologia
3.
Mol Oral Microbiol ; 37(2): 63-76, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997976

RESUMO

The effect of electronic cigarette (e-cigarette) smoking, especially its long-term impact on oral health, is poorly understood. Here, we conducted a longitudinal clinical study with two study visits, 6 months apart, to investigate the effect of e-cigarette use on the bacterial community structure in the saliva of 101 periodontitis patients. Our data demonstrated that e-cigarette use altered the oral microbiome in periodontitis patients, enriching members of the Filifactor, Treponema, and Fusobacterium taxa. For patients at the same periodontal disease stage, cigarette smokers and e-cigarette smokers shared more similarities in their oral bacterial composition. E-cigarette smoking may have a similar potential as cigarette smoking at altering the bacterial composition of saliva over time, leading to an increase in the relative abundance of periodontal disease-associated pathogens such as Porphyromonas gingivalis and Fusobacterium nucleatum. The correlation analysis showed that certain genera, such as Dialister, Selenomonas, and Leptotrichia in the e-cigarette smoking group, were positively correlated with the levels of proinflammatory cytokines, including IFN-γ, IL-1ß, and TNF-α. E-cigarette use was also associated with elevated levels of proinflammatory cytokines such as IFN-γ and TNF-α, which contribute to oral microbiome dysbiosis and advanced disease state.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Doenças Periodontais , Periodontite , Vaping , Citocinas , Humanos , Periodontite/microbiologia , Porphyromonas gingivalis , Fator de Necrose Tumoral alfa
4.
Front Microbiol ; 12: 632731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017316

RESUMO

Thermoflexus hugenholtzii JAD2T, the only cultured representative of the Chloroflexota order Thermoflexales, is abundant in Great Boiling Spring (GBS), NV, United States, and close relatives inhabit geothermal systems globally. However, no defined medium exists for T. hugenholtzii JAD2T and no single carbon source is known to support its growth, leaving key knowledge gaps in its metabolism and nutritional needs. Here, we report comparative genomic analysis of the draft genome of T. hugenholtzii JAD2T and eight closely related metagenome-assembled genomes (MAGs) from geothermal sites in China, Japan, and the United States, representing "Candidatus Thermoflexus japonica," "Candidatus Thermoflexus tengchongensis," and "Candidatus Thermoflexus sinensis." Genomics was integrated with targeted exometabolomics and 13C metabolic probing of T. hugenholtzii. The Thermoflexus genomes each code for complete central carbon metabolic pathways and an unusually high abundance and diversity of peptidases, particularly Metallo- and Serine peptidase families, along with ABC transporters for peptides and some amino acids. The T. hugenholtzii JAD2T exometabolome provided evidence of extracellular proteolytic activity based on the accumulation of free amino acids. However, several neutral and polar amino acids appear not to be utilized, based on their accumulation in the medium and the lack of annotated transporters. Adenine and adenosine were scavenged, and thymine and nicotinic acid were released, suggesting interdependency with other organisms in situ. Metabolic probing of T. hugenholtzii JAD2T using 13C-labeled compounds provided evidence of oxidation of glucose, pyruvate, cysteine, and citrate, and functioning glycolytic, tricarboxylic acid (TCA), and oxidative pentose-phosphate pathways (PPPs). However, differential use of position-specific 13C-labeled compounds showed that glycolysis and the TCA cycle were uncoupled. Thus, despite the high abundance of Thermoflexus in sediments of some geothermal systems, they appear to be highly focused on chemoorganotrophy, particularly protein degradation, and may interact extensively with other microorganisms in situ.

5.
Front Microbiol ; 10: 1427, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333598

RESUMO

Temperature is a primary driver of microbial community composition and taxonomic diversity; however, it is unclear to what extent temperature affects characteristics of central carbon metabolic pathways (CCMPs) at the community level. In this study, 16S rRNA gene amplicon and metagenome sequencing were combined with 13C-labeled metabolite probing of the CCMPs to assess community carbon metabolism along a temperature gradient (60-95°C) in Great Boiling Spring, NV. 16S rRNA gene amplicon diversity was inversely proportional to temperature, and Archaea were dominant at higher temperatures. KO richness and diversity were also inversely proportional to temperature, yet CCMP genes were similarly represented across the temperature gradient and many individual metagenome-assembled genomes had complete pathways. In contrast, genes encoding cellulosomes and many genes involved in plant matter degradation and photosynthesis were absent at higher temperatures. In situ 13C-CO2 production from labeled isotopomer pairs of glucose, pyruvate, and acetate suggested lower relative oxidative pentose phosphate pathway activity and/or fermentation at 60°C, and a stable or decreased maintenance energy demand at higher temperatures. Catabolism of 13C-labeled citrate, succinate, L-alanine, L-serine, and L-cysteine was observed at 85°C, demonstrating broad heterotrophic activity and confirming functioning of the TCA cycle. Together, these results suggest that temperature-driven losses in biodiversity and gene content in geothermal systems may not alter CCMP function or maintenance energy demands at a community level.

6.
Extremophiles ; 22(6): 983-991, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30219948

RESUMO

Thermus species are widespread in natural and artificial thermal environments. Two new yellow-pigmented strains, L198T and L423, isolated from Little Hot Creek, a geothermal spring in eastern California, were identified as novel organisms belonging to the genus Thermus. Cells are Gram-negative, rod-shaped, and non-motile. Growth was observed at temperatures from 45 to 75 °C and at salinities of 0-2.0% added NaCl. Both strains grow heterotrophically or chemolithotrophically by oxidation of thiosulfate to sulfate. L198T and L423 grow by aerobic respiration or anaerobic respiration with arsenate as the terminal electron acceptor. Values for 16S rRNA gene identity (≤ 97.01%), digital DNA-DNA hybridization (≤ 32.7%), OrthoANI (≤ 87.5%), and genome-to-genome distance (0.13) values to all Thermus genomes were less than established criteria for microbial species. The predominant respiratory quinone was menaquinone-8 and the major cellular fatty acids were iso-C15:0, iso-C17:0 and anteiso-C15:0. One unidentified phospholipid (PL1) and one unidentified glycolipid (GL1) dominated the polar lipid pattern. The new strains could be differentiated from related taxa by ß-galactosidase and ß-glucosidase activity and the presence of hydroxy fatty acids. Based on phylogenetic, genomic, phenotypic, and chemotaxonomic evidence, the novel species Thermus sediminis sp. nov. is proposed, with the type strain L198T (= CGMCC 1.13590T = KCTC XXX).


Assuntos
Arseniatos/metabolismo , Thermus/genética , Tiossulfatos/metabolismo , Respiração Celular , Genoma Bacteriano , Fontes Termais/microbiologia , Metabolismo dos Lipídeos , Oxirredução , Termotolerância , Thermus/isolamento & purificação , Thermus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA