Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 880432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712348

RESUMO

Anti-microbial resistance is a rising global healthcare concern that needs urgent attention as growing number of infections become difficult to treat with the currently available antibiotics. This is particularly true for mycobacterial infections like tuberculosis and leprosy and those with emerging opportunistic pathogens such as Mycobacterium abscessus, where multi-drug resistance leads to increased healthcare cost and mortality. M. abscessus is a highly drug-resistant non-tuberculous mycobacterium which causes life-threatening infections in people with chronic lung conditions such as cystic fibrosis. In this study, we explore M. abscessus phosphopantetheine adenylyl transferase (PPAT), an enzyme involved in the biosynthesis of Coenzyme A, as a target for the development of new antibiotics. We provide structural insights into substrate and feedback inhibitor binding modes of M. abscessus PPAT, thereby setting the basis for further chemical exploration of the enzyme. We then utilize a multi-dimensional fragment screening approach involving biophysical and structural analysis, followed by evaluation of compounds from a previous fragment-based drug discovery campaign against M. tuberculosis PPAT ortholog. This allowed the identification of an early-stage lead molecule exhibiting low micro molar affinity against M. abscessus PPAT (Kd 3.2 ± 0.8 µM) and potential new ways to design inhibitors against this enzyme. The resulting crystal structures reveal striking conformational changes and closure of solvent channel of M. abscessus PPAT hexamer providing novel strategies of inhibition. The study thus validates the ligandability of M. abscessus PPAT as an antibiotic target and identifies crucial starting points for structure-guided drug discovery against this bacterium.

2.
Nature ; 601(7894): 643-648, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34987222

RESUMO

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has a central role in non-homologous end joining, one of the two main pathways that detect and repair DNA double-strand breaks (DSBs) in humans1,2. DNA-PKcs is of great importance in repairing pathological DSBs, making DNA-PKcs inhibitors attractive therapeutic agents for cancer in combination with DSB-inducing radiotherapy and chemotherapy3. Many of the selective inhibitors of DNA-PKcs that have been developed exhibit potential as treatment for various cancers4. Here we report cryo-electron microscopy (cryo-EM) structures of human DNA-PKcs natively purified from HeLa cell nuclear extracts, in complex with adenosine-5'-(γ-thio)-triphosphate (ATPγS) and four inhibitors (wortmannin, NU7441, AZD7648 and M3814), including drug candidates undergoing clinical trials. The structures reveal molecular details of ATP binding at the active site before catalysis and provide insights into the modes of action and specificities of the competitive inhibitors. Of note, binding of the ligands causes movement of the PIKK regulatory domain (PRD), revealing a connection between the p-loop and PRD conformations. Electrophoretic mobility shift assay and cryo-EM studies on the DNA-dependent protein kinase holoenzyme further show that ligand binding does not have a negative allosteric or inhibitory effect on assembly of the holoenzyme complex and that inhibitors function through direct competition with ATP. Overall, the structures described in this study should greatly assist future efforts in rational drug design targeting DNA-PKcs, demonstrating the potential of cryo-EM in structure-guided drug development for large and challenging targets.


Assuntos
Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA , Trifosfato de Adenosina , Domínio Catalítico , Microscopia Crioeletrônica , DNA/metabolismo , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Células HeLa , Holoenzimas/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Piridazinas , Quinazolinas
3.
ACS Infect Dis ; 8(2): 296-309, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35037462

RESUMO

Mycobacterium abscessus (Mab) has emerged as a challenging threat to individuals with cystic fibrosis. Infections caused by this pathogen are often impossible to treat due to the intrinsic antibiotic resistance leading to lung malfunction and eventually death. Therefore, there is an urgent need to develop new drugs against novel targets in Mab to overcome drug resistance and subsequent treatment failure. In this study, SAICAR synthetase (PurC) from Mab was identified as a promising target for novel antibiotics. An in-house fragment library screen and a high-throughput X-ray crystallographic screen of diverse fragment libraries were explored to provide crucial starting points for fragment elaboration. A series of compounds developed from fragment growing and merging strategies, guided by crystallographic information and careful hit-to-lead optimization, have achieved potent nanomolar binding affinity against the enzyme. Some compounds also show a promising inhibitory effect against Mab and Mtb. This work utilizes a fragment-based design and demonstrates for the first time the potential to develop inhibitors against PurC from Mab.


Assuntos
Mycobacterium abscessus , Antibacterianos/química , Antibacterianos/farmacologia , Cristalografia por Raios X , Humanos , Peptídeo Sintases
4.
J Med Chem ; 62(15): 7210-7232, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31282680

RESUMO

Mycobacterium abscessus (Mab) is a rapidly growing species of multidrug-resistant nontuberculous mycobacteria that has emerged as a growing threat to individuals with cystic fibrosis and other pre-existing chronic lung diseases. Mab pulmonary infections are difficult, or sometimes impossible, to treat and result in accelerated lung function decline and premature death. There is therefore an urgent need to develop novel antibiotics with improved efficacy. tRNA (m1G37) methyltransferase (TrmD) is a promising target for novel antibiotics. It is essential in Mab and other mycobacteria, improving reading frame maintenance on the ribosome to prevent frameshift errors. In this work, a fragment-based approach was employed with the merging of two fragments bound to the active site, followed by structure-guided elaboration to design potent nanomolar inhibitors against Mab TrmD. Several of these compounds exhibit promising activity against mycobacterial species, including Mycobacterium tuberculosis and Mycobacterium leprae in addition to Mab, supporting the use of TrmD as a target for the development of antimycobacterial compounds.


Assuntos
Antibacterianos/química , Desenvolvimento de Medicamentos/métodos , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/enzimologia , tRNA Metiltransferases/antagonistas & inibidores , tRNA Metiltransferases/metabolismo , Antibacterianos/farmacologia , Cristalografia por Raios X/métodos , Humanos , Estrutura Secundária de Proteína
5.
J Mol Biol ; 429(17): 2677-2693, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28648615

RESUMO

Interest in applications of protein crystallography to medicine was evident, as the first high-resolution structures emerged in the 50s and 60s. In Cambridge, Max Perutz and John Kendrew sought to understand mutations in sickle cell and other genetic diseases related to hemoglobin, while in Oxford, the group of Dorothy Hodgkin became interested in long-lasting zinc-insulin crystals for treatment of diabetes and later considered insulin redesign, as synthetic insulins became possible. The use of protein crystallography in structure-guided drug discovery emerged as enzyme structures allowed the identification of potential inhibitor-binding sites and optimization of interactions of hits using the structure of the target protein. Early examples of this approach were the use of the structure of renin to design antihypertensives and the structure of HIV protease in design of AIDS antivirals. More recently, use of structure-guided design with fragment-based drug discovery, which reduces the size of screening libraries by decreasing complexity, has improved ligand efficiency in drug design and has been used to progress three oncology drugs through clinical trials to FDA approval. We exemplify current developments in structure-guided target identification and fragment-based lead discovery with efforts to develop new antimicrobials for mycobacterial infections.


Assuntos
Cristalografia por Raios X/métodos , Descoberta de Drogas/métodos , Proteínas/química , Descoberta de Drogas/história , História do Século XX , História do Século XXI
6.
Biochem Soc Trans ; 45(2): 303-311, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28408471

RESUMO

For over four decades structural biology has been used to understand the mechanisms of disease, and structure-guided approaches have demonstrated clearly that they can contribute to many aspects of early drug discovery, both computationally and experimentally. Structure can also inform our understanding of impacts of mutations in human genetic diseases and drug resistance in cancers and infectious diseases. We discuss the ways that structural insights might be useful in both repurposing off-licence drugs and guide the design of new molecules that might be less susceptible to drug resistance in the future.


Assuntos
Descoberta de Drogas/métodos , Farmacorresistência Bacteriana/efeitos dos fármacos , Mutação/efeitos dos fármacos , Reposicionamento de Medicamentos , Predisposição Genética para Doença , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA