Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38541029

RESUMO

Molecular imaging is a key tool in the diagnosis and treatment of prostate cancer (PCa). Magnetic Resonance (MR) plays a major role in this respect with nuclear medicine imaging, particularly, Prostate-Specific Membrane Antigen-based, (PSMA-based) positron emission tomography with computed tomography (PET/CT) also playing a major role of rapidly increasing importance. Another key technology finding growing application across medicine and specifically in molecular imaging is the use of machine learning (ML) and artificial intelligence (AI). Several authoritative reviews are available of the role of MR-based molecular imaging with a sparsity of reviews of the role of PET/CT. This review will focus on the use of AI for molecular imaging for PCa. It will aim to achieve two goals: firstly, to give the reader an introduction to the AI technologies available, and secondly, to provide an overview of AI applied to PET/CT in PCa. The clinical applications include diagnosis, staging, target volume definition for treatment planning, outcome prediction and outcome monitoring. ML and AL techniques discussed include radiomics, convolutional neural networks (CNN), generative adversarial networks (GAN) and training methods: supervised, unsupervised and semi-supervised learning.

2.
Cancers (Basel) ; 16(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339394

RESUMO

Performing a mitosis count (MC) is the diagnostic task of histologically grading canine Soft Tissue Sarcoma (cSTS). However, mitosis count is subject to inter- and intra-observer variability. Deep learning models can offer a standardisation in the process of MC used to histologically grade canine Soft Tissue Sarcomas. Subsequently, the focus of this study was mitosis detection in canine Perivascular Wall Tumours (cPWTs). Generating mitosis annotations is a long and arduous process open to inter-observer variability. Therefore, by keeping pathologists in the loop, a two-step annotation process was performed where a pre-trained Faster R-CNN model was trained on initial annotations provided by veterinary pathologists. The pathologists reviewed the output false positive mitosis candidates and determined whether these were overlooked candidates, thus updating the dataset. Faster R-CNN was then trained on this updated dataset. An optimal decision threshold was applied to maximise the F1-score predetermined using the validation set and produced our best F1-score of 0.75, which is competitive with the state of the art in the canine mitosis domain.

3.
BMJ Open ; 14(1): e079863, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38262635

RESUMO

INTRODUCTION: Worldwide, pancreatic cancer has a poor prognosis. Early diagnosis may improve survival by enabling curative treatment. Statistical and machine learning diagnostic prediction models using risk factors such as patient demographics and blood tests are being developed for clinical use to improve early diagnosis. One example is the Enriching New-onset Diabetes for Pancreatic Cancer (ENDPAC) model, which employs patients' age, blood glucose and weight changes to provide pancreatic cancer risk scores. These values are routinely collected in primary care in the UK. Primary care's central role in cancer diagnosis makes it an ideal setting to implement ENDPAC but it has yet to be used in clinical settings. This study aims to determine the feasibility of applying ENDPAC to data held by UK primary care practices. METHODS AND ANALYSIS: This will be a multicentre observational study with a cohort design, determining the feasibility of applying ENDPAC in UK primary care. We will develop software to search, extract and process anonymised data from 20 primary care providers' electronic patient record management systems on participants aged 50+ years, with a glycated haemoglobin (HbA1c) test result of ≥48 mmol/mol (6.5%) and no previous abnormal HbA1c results. Software to calculate ENDPAC scores will be developed, and descriptive statistics used to summarise the cohort's demographics and assess data quality. Findings will inform the development of a future UK clinical trial to test ENDPAC's effectiveness for the early detection of pancreatic cancer. ETHICS AND DISSEMINATION: This project has been reviewed by the University of Surrey University Ethics Committee and received a favourable ethical opinion (FHMS 22-23151 EGA). Study findings will be presented at scientific meetings and published in international peer-reviewed journals. Participating primary care practices, clinical leads and policy makers will be provided with summaries of the findings.


Assuntos
Diabetes Mellitus , Neoplasias Pancreáticas , Humanos , Estudos de Viabilidade , Hemoglobinas Glicadas , Estudos Observacionais como Assunto , Atenção Primária à Saúde , Fatores de Risco , Pessoa de Meia-Idade , Estudos Multicêntricos como Assunto , Idoso
4.
Vet Sci ; 10(1)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36669046

RESUMO

The definitive diagnosis of canine soft-tissue sarcomas (STSs) is based on histological assessment of formalin-fixed tissues. Assessment of parameters, such as degree of differentiation, necrosis score and mitotic score, give rise to a final tumour grade, which is important in determining prognosis and subsequent treatment modalities. However, grading discrepancies are reported to occur in human and canine STSs, which can result in complications regarding treatment plans. The introduction of digital pathology has the potential to help improve STS grading via automated determination of the presence and extent of necrosis. The detected necrotic regions can be factored in the grading scheme or excluded before analysing the remaining tissue. Here we describe a method to detect tumour necrosis in histopathological whole-slide images (WSIs) of STSs using machine learning. Annotated areas of necrosis were extracted from WSIs and the patches containing necrotic tissue fed into a pre-trained DenseNet161 convolutional neural network (CNN) for training, testing and validation. The proposed CNN architecture reported favourable results, with an overall validation accuracy of 92.7% for necrosis detection which represents the number of correctly classified data instances over the total number of data instances. The proposed method, when vigorously validated represents a promising tool to assist pathologists in evaluating necrosis in canine STS tumours, by increasing efficiency, accuracy and reducing inter-rater variation.

5.
Anal Chem ; 93(4): 2309-2316, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33395266

RESUMO

Mass spectrometry imaging can produce large amounts of complex spectral and spatial data. Such data sets are often analyzed with unsupervised machine learning approaches, which aim at reducing their complexity and facilitating their interpretation. However, choices made during data processing can impact the overall interpretation of these analyses. This work investigates the impact of the choices made at the peak selection step, which often occurs early in the data processing pipeline. The discussion is done in terms of visualization and interpretation of the results of two commonly used unsupervised approaches: t-distributed stochastic neighbor embedding and k-means clustering, which differ in nature and complexity. Criteria considered for peak selection include those based on hypotheses (exemplified herein in the analysis of metabolic alterations in genetically engineered mouse models of human colorectal cancer), particular molecular classes, and ion intensity. The results suggest that the choices made at the peak selection step have a significant impact in the visual interpretation of the results of either dimensionality reduction or clustering techniques and consequently in any downstream analysis that relies on these. Of particular significance, the results of this work show that while using the most abundant ions can result in interesting structure-related segmentation patterns that correlate well with histological features, using a smaller number of ions specifically selected based on prior knowledge about the biochemistry of the tissues under investigation can result in an easier-to-interpret, potentially more valuable, hypothesis-confirming result. Findings presented will help researchers understand and better utilize unsupervised machine learning approaches to mine high-dimensionality data.

6.
Stud Health Technol Inform ; 270: 1369-1370, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32570663

RESUMO

Although routine healthcare data are not collected for research, they are increasingly used in epidemiology and are key real-world evidence for improving healthcare. This study presents a method to identify prostate cancer cases from a large English primary care database. 19,619 (1.3%) men had a code for prostate cancer diagnosis. Codes for medium and high Gleason grading enabled identification of additional 94 (0.5%) cases. Many studies do not report codes used to identify patients, and if published, the lists of codes differ from study to study. This can lead to poor research reproducibility and hinder validation. This work demonstrates that carefully developed comprehensive lists of clinical codes can be used to identify prostate cancer; and that approaches that do not solely rely on clinical codes such as ontologies or data linkage should also be considered.


Assuntos
Neoplasias da Próstata , Bases de Dados Factuais , Humanos , Masculino , Gradação de Tumores , Atenção Primária à Saúde , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA