Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113081

RESUMO

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ('Myomatrix arrays') that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a 'motor unit,' during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and identifying pathologies of the motor system.


Assuntos
Neurônios Motores , Primatas , Ratos , Camundongos , Animais , Neurônios Motores/fisiologia , Eletrodos , Fibras Musculares Esqueléticas
2.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36865176

RESUMO

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ("Myomatrix arrays") that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a "motor unit", during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and in identifying pathologies of the motor system.

3.
J Neurosci ; 28(28): 7130-6, 2008 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-18614682

RESUMO

Sex steroids such as androgens and estrogens have trophic effects on the brain and can ameliorate neurodegeneration, and the withdrawal of circulating steroids induces neurodegeneration in several hormone-sensitive brain areas. Very little is known about the underlying molecular mechanisms that mediate neuronal regression caused by hormone-withdrawal, however. Here we show that reduction of programmed cell death by local infusion of caspase inhibitors rescues a telencephalic nucleus in the adult avian song control system from neurodegeneration that is induced by hormone withdrawal. This treatment also has trans-synaptic effects that provide some protection of an efferent target region. We found that unilateral infusion of caspase inhibitors in vivo in adult white-crowned sparrows rescued neurons within the hormone-sensitive song nucleus HVC (used as a proper name) from programmed cell death for as long as seven days after withdrawal of testosterone and a shift to short-day photoperiod and that the activation of caspase-3 was reduced by 59% on average in the ipsilateral HVC compared with the unmanipulated contralateral HVC. Caspase inhibitor infusion near HVC was sufficient to preserve neuron size ipsilaterally in a downstream nucleus, the robust nucleus of the arcopallium. This is the first report that sustained local application of caspase inhibitors can protect a telencephalic brain area from neurodegeneration in vivo and that a degenerating neural circuit rescued with caspase inhibitors produces sufficient trophic support to protect attributes of a downstream target that would otherwise degenerate. These results strengthen the case for the possible therapeutic use of caspase inhibitors under certain neurodegenerative conditions.


Assuntos
Caspase 3/metabolismo , Inibidores de Cisteína Proteinase/administração & dosagem , Degeneração Neural/prevenção & controle , Fotoperíodo , Telencéfalo/patologia , Análise de Variância , Animais , Di-Hidrotestosterona/administração & dosagem , Sistemas de Liberação de Medicamentos , Estradiol/administração & dosagem , Lateralidade Funcional , Masculino , Degeneração Neural/induzido quimicamente , Vias Neurais/efeitos dos fármacos , Pardais , Testosterona/administração & dosagem , Fatores de Tempo
4.
Gen Comp Endocrinol ; 157(3): 259-65, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18457836

RESUMO

Birdsong is regulated by a series of discrete brain nuclei known as the song control system. In seasonally-breeding male songbirds, seasonal changes in steroid sex hormones regulate the structure and electrophysiology of song control system neurons, resulting in dramatic changes in singing behavior. Male songbirds can be brought into the laboratory, where circulating levels of steroid hormone and photoperiod can be abruptly manipulated, providing controlled conditions under which rapid "seasonal-like" changes in behavior and morphology can be carefully studied. In this mini-review, we discuss the steroidal and cellular mechanisms underlying seasonal-like growth and regression of the song control system in adult male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii), and its impact on song behavior. Specifically, we discuss recent advances concerning: (1) the role of androgen and estrogen receptors in inducing seasonal-like growth of the song control system; (2) how photoperiod modulates the time course of testosterone-induced growth of the song control system; (3) how bilateral intracerebral infusion of androgen and estrogen receptor antagonists near the song control nucleus HVC prevents seasonal-like increases in song stereotypy but not song rate; and (4) the steroidal and cellular mechanisms that mediate rapid regression of the song control system. Throughout this mini-review we compare data collected from white-crowned sparrows to that from other songbird species. We conclude by outlining avenues of future research.


Assuntos
Aves/fisiologia , Estações do Ano , Pardais/fisiologia , Vocalização Animal/fisiologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA