Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(70): 10504-10507, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644759

RESUMO

We determine the efficacy for three known structurally related, membrane active detergents against multidrug resistant and wild type strains of Pseudomonas aeruginosa. Accessible solution state NMR experiments are used to quantify phospholipid headgroup composition of the microbial membranes and to gain molecular level insight into antimicrobial mode of action.


Assuntos
Detergentes , Pseudomonas aeruginosa , Detergentes/farmacologia , Betaína , Fosfolipídeos
2.
Molecules ; 25(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093030

RESUMO

As opposed to small molecules, macrocyclic peptides possess a large surface area and are recognised as promising candidates to selectively treat diseases by disrupting specific protein-protein interactions (PPIs). Due to the difficulty in predicting cyclopeptide conformations in solution, the de novo design of bioactive cyclopeptides remains significantly challenging. In this study, we used the combination of conformational analyses and molecular docking studies to design a new cyclopeptide inhibitor of the interaction between the human tumour necrosis factor alpha (TNFα) and its receptor TNFR-1. This interaction is a key in mediating the inflammatory response to tissue injury and infection in humans, and it is also an important causative factor of rheumatoid arthritis, psoriasis and inflammatory bowel disease. The solution state NMR structure of the cyclopeptide was determined, which helped to deduce its mode of interaction with TNFα. TNFα sensor cells were used to evaluate the biological activity of the peptide.


Assuntos
Desenho de Fármacos , Peptídeos Cíclicos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Células HEK293 , Humanos , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
3.
Elife ; 82019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31552823

RESUMO

Transient oligomers are commonly formed in the early stages of amyloid assembly. Determining the structure(s) of these species and defining their role(s) in assembly is key to devising new routes to control disease. Here, using a combination of chemical kinetics, NMR spectroscopy and other biophysical methods, we identify and structurally characterize the oligomers required for amyloid assembly of the protein ΔN6, a truncation variant of human ß2-microglobulin (ß2m) found in amyloid deposits in the joints of patients with dialysis-related amyloidosis. The results reveal an assembly pathway which is initiated by the formation of head-to-head non-toxic dimers and hexamers en route to amyloid fibrils. Comparison with inhibitory dimers shows that precise subunit organization determines amyloid assembly, while dynamics in the C-terminal strand hint to the initiation of cross-ß structure formation. The results provide a detailed structural view of early amyloid assembly involving structured species that are not cytotoxic.


Assuntos
Amiloide/química , Amiloide/metabolismo , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Multimerização Proteica , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo , Fenômenos Biofísicos , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Ligação Proteica
4.
Biomol NMR Assign ; 12(2): 231-235, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29582384

RESUMO

Fibroblast growth factors receptors (FGFR) are transmembrane protein tyrosine kinases involved in many cellular process, including growth, differentiation and angiogenesis. Dysregulation of FGFR enzymatic activity is associated with developmental disorders and cancers; therefore FGFRs have become attractive targets for drug discovery, with a number of agents in late-stage clinical trials. Here, we present the backbone resonance assignments of FGFR3 tyrosine kinase domain in the ligand-free form and in complex with the canonical FGFR kinase inhibitor PD173074. Analysis of chemical shift changes upon inhibitor binding highlights a characteristic pattern of allosteric network perturbations that is of relevance for future drug discovery activities aimed at development of conformationally-selective FGFR inhibitors.


Assuntos
Apoproteínas/química , Apoproteínas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Pirimidinas/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Apoproteínas/antagonistas & inibidores , Humanos , Ligação Proteica , Domínios Proteicos , Pirimidinas/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores
5.
Structure ; 26(3): 446-458.e8, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29478821

RESUMO

Receptor tyrosine kinase FGFR3 is involved in many signaling networks and is frequently mutated in developmental disorders and cancer. The Hsp90/Cdc37 chaperone system is essential for function of normal and neoplastic cells. Here we uncover the mechanistic inter-relationships between these proteins by combining approaches including NMR, HDX-MS, and SAXS. We show that several disease-linked mutations convert FGFR3 to a stronger client, where the determinant underpinning client strength involves an allosteric network through the N-lobe and at the lobe interface. We determine the architecture of the client kinase/Cdc37 complex and demonstrate, together with site-specific information, that binding of Cdc37 to unrelated kinases induces a common, extensive conformational remodeling of the kinase N-lobe, beyond localized changes and interactions within the binary complex. As further shown for FGFR3, this processing by Cdc37 deactivates the kinase and presents it, in a specific orientation established in the complex, for direct recognition by Hsp90.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mutação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Sítio Alostérico , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Proc Natl Acad Sci U S A ; 109(6): 2102-7, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22308410

RESUMO

Resistance to the antibiotic fusidic acid (FA) in the human pathogen Staphylococcus aureus usually results from expression of FusB-type proteins (FusB or FusC). These proteins bind to elongation factor G (EF-G), the target of FA, and rescue translation from FA-mediated inhibition by an unknown mechanism. Here we show that the FusB family are two-domain metalloproteins, the C-terminal domain of which contains a four-cysteine zinc finger with a unique structural fold. This domain mediates a high-affinity interaction with the C-terminal domains of EF-G. By binding to EF-G on the ribosome, FusB-type proteins promote the dissociation of stalled ribosome⋅EF-G⋅GDP complexes that form in the presence of FA, thereby allowing the ribosomes to resume translation. Ribosome clearance by these proteins represents a highly unusual antibiotic resistance mechanism, which appears to be fine-tuned by the relative abundance of FusB-type protein, ribosomes, and EF-G.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Ácido Fusídico/farmacologia , Ribossomos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Biológicos , Modelos Moleculares , Fator G para Elongação de Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Mapas de Interação de Proteínas , Ribossomos/efeitos dos fármacos
7.
J Mol Biol ; 416(2): 300-18, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22226836

RESUMO

The unfolded ensemble in aqueous solution represents the starting point of protein folding. Characterisation of this species is often difficult since the native state is usually predominantly populated at equilibrium. Previous work has shown that the four-helix protein, Im7 (immunity protein 7), folds via an on-pathway intermediate. While the transition states and folding intermediate have been characterised in atomistic detail, knowledge of the unfolded ensemble under the same ambient conditions remained sparse. Here, we introduce destabilising amino acid substitutions into the sequence of Im7, such that the unfolded state becomes predominantly populated at equilibrium in the absence of denaturant. Using far- and near-UV CD, fluorescence, urea titration and heteronuclear NMR experiments, we show that three amino acid substitutions (L18A-L19A-L37A) are sufficient to prevent Im7 folding, such that the unfolded state is predominantly populated at equilibrium. Using measurement of chemical shifts, (15)N transverse relaxation rates and sedimentation coefficients, we show that the unfolded species of L18A-L19A-L37A deviates significantly from random-coil behaviour. Specifically, we demonstrate that this unfolded species is compact (R(h)=25 Å) relative to the urea-denatured state (R(h)≥30 Å) and contains local clusters of hydrophobic residues in regions that correspond to the four helices in the native state. Despite these interactions, there is no evidence for long-range stabilising tertiary interactions or persistent helical structure. The results reveal an unfolded ensemble that is conformationally restricted in regions of the polypeptide chain that ultimately form helices I, II and IV in the native state.


Assuntos
Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Dobramento de Proteína , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica , Estrutura Secundária de Proteína , Ureia/química
8.
Mol Cell ; 41(2): 161-72, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21255727

RESUMO

Numerous studies of amyloid assembly have indicated that partially folded protein species are responsible for initiating aggregation. Despite their importance, the structural and dynamic features of amyloidogenic intermediates and the molecular details of how they cause aggregation remain elusive. Here, we use ΔN6, a truncation variant of the naturally amyloidogenic protein ß(2)-microglobulin (ß(2)m), to determine the solution structure of a nonnative amyloidogenic intermediate at high resolution. The structure of ΔN6 reveals a major repacking of the hydrophobic core to accommodate the nonnative peptidyl-prolyl trans-isomer at Pro32. These structural changes, together with a concomitant pH-dependent enhancement in backbone dynamics on a microsecond-millisecond timescale, give rise to a rare conformer with increased amyloidogenic potential. We further reveal that catalytic amounts of ΔN6 are competent to convert nonamyloidogenic human wild-type ß(2)m (Hß(2)m) into a rare amyloidogenic conformation and provide structural evidence for the mechanism by which this conformational conversion occurs.


Assuntos
Amiloide/metabolismo , Microglobulina beta-2/química , Amiloide/química , Amiloidose/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Estabilidade Proteica , Estrutura Terciária de Proteína , Microglobulina beta-2/metabolismo , Microglobulina beta-2/fisiologia
9.
Chembiochem ; 11(13): 1867-73, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20715266

RESUMO

The solution structure of the leader sequence of the patellamide precursor peptide was analysed by using CD and determined with NOE-restrained molecular dynamics calculations. This leader sequence is highly conserved in the precursor peptides of some other cyanobactins harbouring heterocycles, and is assumed to play a role in targeting the precursor peptide to the post-translational machinery. The sequence was observed to form an alpha-helix spanning residues 13-28 with a hydrophobic surface on one side of the helix. This hydrophobic surface is proposed to be the site of the initial binding with modifying enzymes.


Assuntos
Proteínas de Bactérias/química , Precursores de Proteínas/química , Sequência de Aminoácidos , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peptídeos/química , Prochloron/enzimologia , Sinais Direcionadores de Proteínas , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
10.
J Mol Biol ; 385(3): 843-53, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18845156

RESUMO

Poxviruses have evolved numerous strategies to evade host innate immunity. Vaccinia virus K7 is a 149-residue protein with previously unknown structure that is highly conserved in the orthopoxvirus family. K7 bears sequence and functional similarities to A52, which interacts with interleukin receptor-associated kinase 2 and tumor necrosis factor receptor-associated factor 6 to suppress nuclear factor kappaB activation and to stimulate the secretion of the anti-inflammatory cytokine interleukin-10. In contrast to A52, K7 forms a complex with DEAD box RNA helicase DDX3, thereby suppressing DDX3-mediated ifnb promoter induction. We determined the NMR solution structure of K7 to provide insight into the structural basis for poxvirus antagonism of innate immune signaling. The structure reveals an alpha-helical fold belonging to the Bcl-2 family despite an unrelated primary sequence. NMR chemical-shift mapping studies have localized the binding surface for DDX3 on a negatively charged face of K7. Furthermore, thermodynamic studies have mapped the K7-binding region to a 30-residue N-terminal fragment of DDX3, ahead of the core RNA helicase domains.


Assuntos
RNA Helicases DEAD-box/metabolismo , Poxviridae/metabolismo , Proteínas Virais/metabolismo , Cromatografia em Gel , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA