Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EJHaem ; 4(3): 745-750, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37601850

RESUMO

Hematologic malignancy is a risk factor for severe coronavirus disease 2019 (COVID-19) in adults; however, data specific to children with leukemia are limited. High-quality infectious adverse event data from the ongoing Children's Oncology Group (COG) standard-risk B acute lymphoblastic leukemia/lymphoma (ALL/LLy) trial, AALL1731, were analyzed to provide a disease-specific estimate of SARS-CoV-2 infection outcomes in pediatric ALL. Of 253 patients with reported infections, the majority (77.1%) were asymptomatic or mildly symptomatic (CTCAE grade 1/2) and there was a single COVID-19-related death. These data suggest SARS-CoV-2 infection does not confer substantial morbidity among young patients with B-lymphoblastic leukemia/lymphoma (B-ALL/LLy).

2.
Pediatr Blood Cancer ; 69(11): e29937, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36083863

RESUMO

Infections cause substantial morbidity for children with acute lymphoblastic leukemia (ALL). Therefore, accurate characterization of infectious adverse events (AEs) reported on clinical trials is imperative to defining, comparing, and managing safety and toxicity. Here, we describe key processes implemented to improve reporting of infectious AEs on two active phase III Children's Oncology Group (COG) ALL trials. Processes include: (a) identifying infections as a targeted toxicity, (b) incorporation of infection-specific case report form questions, and (c) physician review of AEs with real-time data cleaning. Preliminary assessment of these processes suggests improved reporting, as well as opportunities for further improvement.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Doença Aguda , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia
3.
Atherosclerosis ; 268: 32-35, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29175652

RESUMO

BACKGROUND AND AIMS: Serum amyloid A (SAA) predicts cardiovascular events. Overexpression of SAA increases atherosclerosis development; however, deficiency of two of the murine acute phase isoforms, SAA1.1 and SAA2.1, has no effect on atherosclerosis. SAA3 is a pseudogene in humans, but is an expressed acute phase isoform in mice. The goal of this study was to determine if SAA3 affects atherosclerosis in mice. METHODS: ApoE-/- mice were used as the model for all studies. SAA3 was overexpressed by an adeno-associated virus or suppressed using an anti-sense oligonucleotide approach. RESULTS: Over-expression of SAA3 led to a 4-fold increase in atherosclerosis lesion area compared to control mice (p = 0.01). Suppression of SAA3 decreased atherosclerosis in mice genetically deficient in SAA1.1 and SAA2.1 (p < 0.0001). CONCLUSIONS: SAA3 augments atherosclerosis in mice. Our results resolve a previous paradox in the literature and support extensive epidemiological data that SAA is pro-atherogenic.


Assuntos
Aorta/metabolismo , Doenças da Aorta/sangue , Aterosclerose/sangue , Placa Aterosclerótica , Proteína Amiloide A Sérica/metabolismo , Animais , Aorta/patologia , Doenças da Aorta/diagnóstico , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética
4.
Case Rep Oncol ; 9(2): 447-453, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27721766

RESUMO

Pediatric soft tissue sarcomas of the oral/maxillofacial region are rare neoplasms that present significant difficulty with respect to treatment and local control measures. We report four cases of pediatric oral/maxillofacial soft tissue sarcomas from our tertiary care pediatric hospital and emphasize the rarity of these malignancies and the challenges encountered in treating these lesions, and suggest areas for further research. We conclude that multimodal therapy and interdisciplinary cooperation are paramount to successful management of these lesions.

5.
J Lipid Res ; 56(2): 286-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25429103

RESUMO

Serum amyloid A (SAA) has a number of proatherogenic effects including induction of vascular proteoglycans. Chronically elevated SAA was recently shown to increase atherosclerosis in mice. The purpose of this study was to determine whether a brief increase in SAA similarly increased atherosclerosis in a murine model. The recombination activating gene 1-deficient (rag1(-/-)) × apolipoprotein E-deficient (apoe(-/-)) and apoe(-/-) male mice were injected, multiple times or just once respectively, with an adenoviral vector encoding human SAA1 (ad-SAA); the injected mice and controls were maintained on chow for 12-16 weeks. Mice receiving multiple injections of ad-SAA, in which SAA elevation was sustained, had increased atherosclerosis compared with controls. Strikingly, mice receiving only a single injection of ad-SAA, in which SAA was only briefly elevated, also had increased atherosclerosis compared with controls. Using in vitro studies, we demonstrate that SAA treatment leads to increased LDL retention, and that prevention of transforming growth factor beta (TGF-ß) signaling prevents SAA-induced increases in LDL retention and SAA-induced increases in vascular biglycan content. We propose that SAA increases atherosclerosis development via induction of TGF-ß, increased vascular biglycan content, and increased LDL retention. These data suggest that even short-term inflammation with concomitant increase in SAA may increase the risk of developing CVD.


Assuntos
Aterosclerose/sangue , Proteína Amiloide A Sérica/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteoglicanas/metabolismo , Proteína Amiloide A Sérica/genética , Fator de Crescimento Transformador beta
6.
Arterioscler Thromb Vasc Biol ; 34(2): 255-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24265416

RESUMO

OBJECTIVE: Although elevated plasma concentrations of serum amyloid A (SAA) are associated strongly with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice. APPROACH AND RESULTS: Apolipoprotein E-deficient (apoE(-/-)) mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.1 and SAA2.1, were fed a normal rodent diet for 50 weeks. Female mice, but not male apoE-/- mice deficient in SAA1.1 and SAA2.1, had a modest increase (22%; P≤0.05) in plasma cholesterol concentrations and a 53% increase in adipose mass compared with apoE-/- mice expressing SAA1.1 and SAA2.1 that did not affect the plasma cytokine levels or the expression of adipose tissue inflammatory markers. SAA deficiency did not affect lipoprotein cholesterol distributions or plasma triglyceride concentrations in either male or female mice. Atherosclerotic lesion areas measured on the intimal surfaces of the arch, thoracic, and abdominal regions were not significantly different between apoE-/- mice deficient in SAA1.1 and SAA2.1 and apoE-/- mice expressing SAA1.1 and SAA2.1 in either sex. To accelerate lesion formation, mice were fed a Western diet for 12 weeks. SAA deficiency had effect neither on diet-induced alterations in plasma cholesterol, triglyceride, or cytokine concentrations nor on aortic atherosclerotic lesion areas in either male or female mice. In addition, SAA deficiency in male mice had no effect on lesion areas or macrophage accumulation in the aortic roots. CONCLUSIONS: The absence of endogenous SAA1.1 and 2.1 does not affect atherosclerotic lipid deposition in apolipoprotein E-deficient mice fed either normal or Western diets.


Assuntos
Doenças da Aorta/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Proteína Amiloide A Sérica/deficiência , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Adiposidade , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Colesterol/sangue , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Mediadores da Inflamação/sangue , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Amiloide A Sérica/genética , Fatores de Tempo , Triglicerídeos/sangue
7.
Pediatr Blood Cancer ; 60(11): E149-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23813881

RESUMO

In March 2010, the Food and Drug Administration (FDA) issued a black box warning for anti-D immunoglobulin (anti-D), an approved treatment for immune thrombocytopenia (ITP). It is unknown if and how clinical practice at U.S children's hospitals has since changed. We sought to describe inpatient anti-D usage, laboratory monitoring, and anti-D complications before and after the FDA warning. Using the Pediatric Health Information System, we collected data from 41 children's hospitals. There was a modest but statistically significant decrease in anti-D usage from pre-warning to post-warning. Severe complication rates were very low and did not change appreciably.


Assuntos
Padrões de Prática Médica , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Imunoglobulina rho(D)/efeitos adversos , United States Food and Drug Administration/legislação & jurisprudência , Criança , Humanos , Estados Unidos
8.
Am J Pathol ; 173(6): 1902-10, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18974302

RESUMO

Inflammatory markers serum amyloid A (SAA) and C-reactive protein (CRP) are predictive of cardiac disease and are proposed to play causal roles in the development of atherosclerosis, in which the retention of lipoproteins by vascular wall proteoglycans is critical. The purpose of this study was to determine whether SAA and/or CRP alters vascular proteoglycan synthesis and lipoprotein retention in a pro-atherogenic manner. Vascular smooth muscle cells were stimulated with either SAA or CRP (1 to 100 mg/L) and proteoglycans were then isolated and characterized. SAA, but not CRP, increased proteoglycan sulfate incorporation by 50 to 100% in a dose-dependent manner (P < 0.0001), increased glycosaminoglycan chain length, and increased low-density lipoprotein (LDL) binding affinity (K(d), 29 microg/ml LDL versus 90 microg/ml LDL for SAA versus control proteoglycans; P < 0.005). Furthermore, SAA up-regulated biglycan via the induction of endogenous transforming growth factor (TGF)-beta. To determine whether SAA stimulated proteoglycan synthesis in vivo, ApoE(-/-) mice were injected with an adenovirus expressing human SAA-1, a null virus, or saline. Mice that received adenovirus expressing SAA had increased TGF-beta concentrations in plasma and increased aortic biglycan content compared with mice that received either null virus or saline. Thus, SAA alters vascular proteoglycans in a pro-atherogenic manner via the stimulation of TGF-beta and may play a causal role in the development of atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Proteína C-Reativa/metabolismo , Proteoglicanas/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Aorta/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Biglicano , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Haplorrinos , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Proteoglicanas/química , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/genética , Receptores de Lipoxinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA