Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 12(1): 804, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900205

RESUMO

OBJECTIVES: Family with sequence similarity 13 member A (FAM13A) genetic variants have been associated with several chronic respiratory diseases including chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF) and lung cancer. The FAM13A protein includes a RhoGTPase activating protein (RhoGAP) domain known to participate in various cellular mechanisms including cell proliferation. While intensive genomic studies have been performed to reveal its involvement in lung diseases, the biological role of FAM13A protein is still not completely elucidated. RESULTS: We therefore performed a two-hybrid screening to identify protein partners of FAM13A using a human lung cancer cDNA library. We identified several protein partners with a high confidence score. Researchers in the field of chronic lung diseases may benefit from this two-hybrid screening data which may reveal new research pathways to decipher.


Assuntos
Proteínas de Transporte/metabolismo , Células Epiteliais/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Células A549 , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proteínas Ativadoras de GTPase/genética , Biblioteca Gênica , Humanos , Pulmão/citologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ligação Proteica
2.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L58-L70, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358443

RESUMO

Mucus clearance provides an essential innate defense mechanism to keep the airways and lungs free of particles and pathogens. Baseline and stimulated mucin secretion from secretory airway epithelial cells need to be tightly regulated to prevent mucus hypersecretion and mucus plugging of the airways. It is well established that extracellular ATP is a potent stimulus for regulated mucus secretion. Previous studies revealed that ATP acts via metabotropic P2Y2 purinoreceptors on goblet cells. Extracellular ATP, however, is also a potent agonist for ionotropic P2X purinoreceptors. Expression of several P2X isoforms has been reported in airways, but cell type-specific expression and the function thereof remained elusive. With this study, we now provide evidence that P2X4 is the predominant P2X isoform expressed in secretory airway epithelial cells. After IL-13 treatment of either human primary tracheal epithelial cells or mice, P2X4 expression is upregulated in vitro and in vivo under conditions of chronic inflammation, mucous metaplasia, and hyperplasia. Upregulation of P2X4 is strongest in MUC5AC-positive goblet cells. Moreover, activation of P2X4 by extracellular ATP augments intracellular Ca2+ signals and mucin secretion, whereas Ca2+ signals and mucin secretion are dampened by inhibition of P2X4 receptors. These data provide new insights into the purinergic regulation of mucin secretion and add to the emerging picture that P2X receptors modulate exocytosis of large secretory organelles and secretion of macromolecular vesicle cargo.


Assuntos
Sinalização do Cálcio , Células Caliciformes/metabolismo , Mucinas/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Regulação para Cima , Trifosfato de Adenosina/farmacologia , Células Caliciformes/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia
3.
J Cyst Fibros ; 17(2): 190-203, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29239766

RESUMO

BACKGROUND: Cystic fibrosis (CF) lung disease severity is highly variable and dependent on several factors including genetic modifiers. Family with sequence similarity 13 member A (FAM13A) has been previously associated with lung function in the general population as well as in several chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), we examined whether FAM13A is a modifier gene of CF lung phenotype. We also studied how FAM13A may contribute to the physiopathological mechanisms associated with CF. METHODS: We investigated the association of FAM13A with lung function in CF French patients (n=1222) by SNP-wise analysis and Versatile Gene Based Association Study. We also analyzed the consequences of FAM13A knockdown in A549 cells and primary bronchial epithelial cells from CF patients. RESULTS: We found that FAM13A is associated with lung function in CF patients. Utilizing lung epithelial A549 cells and primary human bronchial epithelial cells from CF patients we observed that IL-1ß and TGFß reduced FAM13A expression. Knockdown of FAM13A was associated with increased RhoA activity, induction of F-actin stress fibers and regulation of epithelial-mesenchymal transition markers such as E-cadherin, α-smooth muscle actin and vimentin. CONCLUSION: Our data show that FAM13A is a modifier gene of CF lung phenotype regulating RhoA activity, actin cytoskeleton dynamics and epithelial-mesenchymal transition.


Assuntos
Citoesqueleto de Actina/metabolismo , Fibrose Cística/genética , Transição Epitelial-Mesenquimal/fisiologia , Proteínas Ativadoras de GTPase/genética , Genes Modificadores/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Adolescente , Adulto , Criança , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Feminino , França , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
4.
Am J Respir Cell Mol Biol ; 56(3): 372-382, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27814452

RESUMO

The apical surface liquid (ASL) layer covers the airways and forms a first line of defense against pathogens. Maintenance of ASL volume by airway epithelia is essential for maintaining lung function. The proteolytic activation of epithelial Na+ channels is believed to be the dominating mechanism to cope with increases in ASL volumes. Alternative mechanisms, in particular increases in epithelial osmotic water permeability (Posm), have so far been regarded as rather less important. However, most studies mainly addressed immediate effects upon apical volume expansion (AVE) and increases in ASL. This study addresses the response of lung epithelia to long-term AVE. NCI-H441 cells and primary human tracheal epithelial cells, both cultivated in air-liquid interface conditions, were used as models for the lung epithelium. AVE was established by adding isotonic solution to the apical surface of differentiated lung epithelia, and time course of ASL volume restoration was assessed by the deuterium oxide dilution method. Concomitant ion transport was investigated in Ussing chambers. We identified a low resorptive state immediately after AVE, which coincided with proteolytic ion transport activation within 10-15 minutes after AVE. The main clearance of excess ASL occurred during a delayed (hours after AVE) high resorptive state, which did not correlate with ion transport activation. Instead, high resorptive state onset coincided with an increase in Posm, which depended on aquaporin up-regulation. In summary, our data demonstrate that, aside from ion transport activation, modulation of Posm is a major mechanism to compensate for long-term AVE in lung epithelia.


Assuntos
Epitélio/metabolismo , Pulmão/metabolismo , Reologia , Água/metabolismo , Amilorida/farmacologia , Aquaporinas/metabolismo , Canais Epiteliais de Sódio/metabolismo , Epitélio/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Pulmão/efeitos dos fármacos , Osmose/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Reologia/efeitos dos fármacos , Propriedades de Superfície , Fatores de Tempo
5.
Am J Respir Cell Mol Biol ; 54(5): 707-17, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26473470

RESUMO

The lung epithelium constitutes a selective barrier that separates the airways from the aqueous interstitial compartment. Regulated barrier function controls water and ion transport across the epithelium and is essential for maintaining lung function. Tight junctions (TJs) seal the epithelial barrier and determine the paracellular transport. The properties of TJs depend especially on their claudin composition. Steroids are potent drugs used to treat a variety of airway diseases. Therefore, we addressed whether steroid hormones directly act on TJ properties in lung epithelia. Primary human tracheal epithelial cells and NCI-H441 cells, both cultivated under air-liquid interface conditions, were used as epithelial cell models. Our results demonstrate that glucocorticoids, but not mineralocorticoids, decreased paracellular permeability and shifted the ion permselectivity of TJs toward Cl(-). Glucocorticoids up-regulated claudin 8 (cldn8) expression via glucocorticoid receptors. Silencing experiments revealed that cldn8 is necessary to recruit occludin at the TJs. Immunohistochemistry on human lung tissue showed that cldn8 is specifically expressed in resorptive epithelia of the conducting and respiratory airways but not in the alveolar epithelium. We conclude that glucocorticoids enhance lung epithelia barrier function and increase paracellular Cl(-) selectivity via modulation of cldn8-dependent recruitment of occludin at the TJs. This mode of glucocorticoid action on lung epithelia might be beneficial to patients who suffer from impaired lung barrier function in various diseased conditions.


Assuntos
Claudinas/metabolismo , Epitélio/metabolismo , Glucocorticoides/farmacologia , Pulmão/metabolismo , Junções Íntimas/metabolismo , Impedância Elétrica , Epitélio/efeitos dos fármacos , Imunofluorescência , Inativação Gênica/efeitos dos fármacos , Humanos , Permeabilidade/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Junções Íntimas/efeitos dos fármacos , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
6.
Transl Res ; 168: 40-49, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25940043

RESUMO

Cystic fibrosis (CF) is the most common life-threatening recessive genetic disease in the Caucasian population. This multiorgan disease is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, a chloride channel recognized as regulating several apical ion channels. The gene mutations result either in the lack of the protein at the apical surface or in an improperly functioning protein. Morbidity and mortality because of the mutation of CFTR are mainly attributable to lung disease resulting from chronic infection and inflammation. Since its discovery as the causative gene in 1989, much progress has been achieved not only in clinical genetics but also in basic science studies. Recently, combinations of these efforts have been successfully translated into development and availability for patients of new therapies targeting specific CFTR mutations to correct the CFTR at the protein level. Current technologies such as next gene sequencing and novel genomic editing tools may offer new strategies to identify new CFTR variants and modifier genes, and to correct CFTR to pursue personalized medicine, which is already developed in some patient subsets. Personalized medicine or P4 medicine ("personalized," "predictive," "preventive," and "participatory") is currently booming for CF. The various current and future challenges of personalized medicine as they apply to the issues faced in CF are discussed in this review.


Assuntos
Fibrose Cística/genética , Medicina de Precisão/métodos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Mutação
7.
PLoS One ; 9(1): e84926, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465451

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is known to play a role in the pathogenesis of various diseases including Parkinson disease, morbus Crohn, leprosy and cancer. LRRK2 is suggested to be involved in a number of cell biological processes such as vesicular trafficking, transcription, autophagy and lysosomal pathways. Recent histological studies of lungs of LRRK2 knock-out (LRRK2 -/-) mice revealed significantly enlarged lamellar bodies (LBs) in alveolar type II (ATII) epithelial cells. LBs are large, lysosome-related storage organelles for pulmonary surfactant, which is released into the alveolar lumen upon LB exocytosis. In this study we used high-resolution, subcellular live-cell imaging assays to investigate whether similar morphological changes can be observed in primary ATII cells from LRRK2 -/- rats and whether such changes result in altered LB exocytosis. Similarly to the report in mice, ATII cells from LRRK2 -/- rats contained significantly enlarged LBs resulting in a >50% increase in LB volume. Stimulation of ATII cells with ATP elicited LB exocytosis in a significantly increased proportion of cells from LRRK2 -/- animals. LRRK2 -/- cells also displayed increased intracellular Ca(2+) release upon ATP treatment and significant triggering of LB exocytosis. These findings are in line with the strong Ca(2+)-dependence of LB fusion activity and suggest that LRRK2 -/- affects exocytic response in ATII cells via modulating intracellular Ca(2+) signaling. Post-fusion regulation of surfactant secretion was unaltered. Actin coating of fused vesicles and subsequent vesicle compression to promote surfactant expulsion were comparable in cells from LRRK2 -/- and wt animals. Surprisingly, surfactant (phospholipid) release from LRRK2 -/- cells was reduced following stimulation of LB exocytosis possibly due to impaired LB maturation and surfactant loading of LBs. In summary our results suggest that LRRK2 -/- affects LB size, modulates intracellular Ca(2+) signaling and promotes LB exocytosis upon stimulation of ATII cells with ATP.


Assuntos
Sinalização do Cálcio , Exocitose/genética , Organelas/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Biomarcadores/metabolismo , Cálcio/metabolismo , Exocitose/efeitos dos fármacos , Deleção de Genes , Expressão Gênica , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Organelas/efeitos dos fármacos , Organelas/ultraestrutura , Proteínas Serina-Treonina Quinases/genética , Alvéolos Pulmonares/patologia , Ratos , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura
8.
FASEB J ; 27(4): 1772-83, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23307836

RESUMO

Two fundamental mechanisms within alveoli are essential for lung function: regulated fluid transport and secretion of surfactant. Surfactant is secreted via exocytosis of lamellar bodies (LBs) in alveolar type II (ATII) cells. We recently reported that LB exocytosis results in fusion-activated cation entry (FACE) via P2X4 receptors on LBs. We propose that FACE, in addition to facilitating surfactant secretion, modulates alveolar fluid transport. Correlative fluorescence and atomic force microscopy revealed that FACE-dependent water influx correlated with individual fusion events in rat primary ATII cells. Moreover, ATII cell monolayers grown at air-liquid interface exhibited increases in short-circuit current (Isc) on stimulation with ATP or UTP. Both are potent agonists for LB exocytosis, but only ATP activates FACE. ATP, not UTP, elicited additional fusion-dependent increases in Isc. Overexpressing dominant-negative P2X4 abrogated this effect by ∼50%, whereas potentiating P2X4 lead to ∼80% increase in Isc. Finally, we monitored changes in alveolar surface liquid (ASL) on ATII monolayers by confocal microscopy. Only stimulation with ATP, not UTP, led to a significant, fusion-dependent, 20% decrease in ASL, indicating apical-to-basolateral fluid transport across ATII monolayers. Our data support the first direct link between LB exocytosis, regulation of surfactant secretion, and transalveolar fluid resorption via FACE.


Assuntos
Trifosfato de Adenosina/farmacologia , Fusão de Membrana/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Cátions/metabolismo , Exocitose/fisiologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Microscopia de Força Atômica/métodos , Alvéolos Pulmonares/citologia , Ratos , Ratos Sprague-Dawley , Uridina Trifosfato/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA