Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014932

RESUMO

Compelling evidence has accumulated on the role of oxidative stress on the endothelial cell (EC) dysfunction in acute coronary syndrome. Unveiling the underlying metabolic determinants has been hampered by the scarcity of appropriate cell models to address cell-autonomous mechanisms of EC dysfunction. We have generated endothelial cells derived from thrombectomy specimens from patients affected with acute myocardial infarction (AMI) and conducted phenotypical and metabolic characterizations. AMI-derived endothelial cells (AMIECs) display impaired growth, migration, and tubulogenesis. Metabolically, AMIECs displayed augmented ROS and glutathione intracellular content, with a diminished glucose consumption coupled to high lactate production. In AMIECs, while PFKFB3 protein levels of were downregulated, PFKFB4 levels were upregulated, suggesting a shunting of glycolysis towards the pentose phosphate pathway, supported by upregulation of G6PD. Furthermore, the glutaminolytic enzyme GLS was upregulated in AMIECs, providing an explanation for the increase in glutathione content. Finally, AMIECs displayed a significantly higher mitochondrial membrane potential than control ECs, which, together with high ROS levels, suggests a coupled mitochondrial activity. We suggest that high mitochondrial proton coupling underlies the high production of ROS, balanced by PPP- and glutaminolysis-driven synthesis of glutathione, as a primary, cell-autonomous abnormality driving EC dysfunction in AMI.


Assuntos
Células Endoteliais , Infarto do Miocárdio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Reprogramação Metabólica , Estresse Oxidativo , Glicólise , Glutationa/metabolismo , Fosfofrutoquinase-2/metabolismo
2.
Front Immunol ; 13: 926304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119118

RESUMO

Existing immune signatures and tumor mutational burden have only modest predictive capacity for the efficacy of immune check point inhibitors. In this study, we developed an immune-metabolic signature suitable for personalized ICI therapies. A classifier using an immune-metabolic signature (IMMETCOLS) was developed on a training set of 77 metastatic colorectal cancer (mCRC) samples and validated on 4,200 tumors from the TCGA database belonging to 11 types. Here, we reveal that the IMMETCOLS signature classifies tumors into three distinct immune-metabolic clusters. Cluster 1 displays markers of enhanced glycolisis, hexosamine byosinthesis and epithelial-to-mesenchymal transition. On multivariate analysis, cluster 1 tumors were enriched in pro-immune signature but not in immunophenoscore and were associated with the poorest median survival. Its predicted tumor metabolic features suggest an acidic-lactate-rich tumor microenvironment (TME) geared to an immunosuppressive setting, enriched in fibroblasts. Cluster 2 displays features of gluconeogenesis ability, which is needed for glucose-independent survival and preferential use of alternative carbon sources, including glutamine and lipid uptake/ß-oxidation. Its metabolic features suggest a hypoxic and hypoglycemic TME, associated with poor tumor-associated antigen presentation. Finally, cluster 3 is highly glycolytic but also has a solid mitochondrial function, with concomitant upregulation of glutamine and essential amino acid transporters and the pentose phosphate pathway leading to glucose exhaustion in the TME and immunosuppression. Together, these findings suggest that the IMMETCOLS signature provides a classifier of tumors from diverse origins, yielding three clusters with distinct immune-metabolic profiles, representing a new predictive tool for patient selection for specific immune-metabolic therapeutic approaches.


Assuntos
Glutamina , Neoplasias , Carbono , Glucose , Hexosaminas , Humanos , Hipoglicemiantes , Lactatos , Lipídeos , Microambiente Tumoral/genética
3.
Cancers (Basel) ; 11(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416205

RESUMO

The current standard-of-care for metastatic colorectal cancer (mCRC) includes chemotherapy and anti-angiogenic or anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, even though the addition of anti-angiogenic agents to backbone chemotherapy provides little benefit for overall survival. Since the approval of anti-angiogenic monoclonal antibodies bevacizumab and aflibercept, for the management of mCRC over a decade ago, extensive efforts have been devoted to discovering predictive factors of the anti-angiogenic response, unsuccessfully. Recent evidence has suggested a potential correlation between angiogenesis and immune phenotypes associated with colorectal cancer. Here, we review evidence of interactions between tumor angiogenesis, the immune microenvironment, and metabolic reprogramming. More specifically, we will highlight such interactions as inferred from our novel immune-metabolic (IM) signature, which groups mCRC into three distinct clusters, namely inflamed-stromal-dependent (IM Cluster 1), inflamed-non stromal-dependent (IM Cluster 2), and non-inflamed or cold (IM Cluster 3), and discuss the merits of the IM classification as a guide to new immune-metabolic combinatorial therapeutic strategies in mCRC.

4.
J Clin Med ; 8(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277295

RESUMO

A major transcriptional and phenotypic reprogramming event during development is the establishment of the mesodermal layer from the ectoderm through epithelial-mesenchymal transition (EMT). EMT is employed in subsequent developmental events, and also in many physiological and pathological processes, such as the dissemination of cancer cells through metastasis, as a reversible transition between epithelial and mesenchymal states. The remarkable phenotypic remodeling accompanying these transitions is driven by characteristic transcription factors whose activities and/or activation depend upon signaling cues and co-factors, including intermediary metabolites. In this review, we summarize salient metabolic features that enable or instigate these transitions, as well as adaptations undergone by cells to meet the metabolic requirements of their new states, with an emphasis on the roles played by the metabolic regulation of epigenetic modifications, notably methylation and acetylation.

5.
PLoS Comput Biol ; 14(1): e1005914, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293497

RESUMO

Epithelial-mesenchymal-transition promotes intra-tumoral heterogeneity, by enhancing tumor cell invasiveness and promoting drug resistance. We integrated transcriptomic data for two clonal subpopulations from a prostate cancer cell line (PC-3) into a genome-scale metabolic network model to explore their metabolic differences and potential vulnerabilities. In this dual cell model, PC-3/S cells express Epithelial-mesenchymal-transition markers and display high invasiveness and low metastatic potential, while PC-3/M cells present the opposite phenotype and higher proliferative rate. Model-driven analysis and experimental validations unveiled a marked metabolic reprogramming in long-chain fatty acids metabolism. While PC-3/M cells showed an enhanced entry of long-chain fatty acids into the mitochondria, PC-3/S cells used long-chain fatty acids as precursors of eicosanoid metabolism. We suggest that this metabolic reprogramming endows PC-3/M cells with augmented energy metabolism for fast proliferation and PC-3/S cells with increased eicosanoid production impacting angiogenesis, cell adhesion and invasion. PC-3/S metabolism also promotes the accumulation of docosahexaenoic acid, a long-chain fatty acid with antiproliferative effects. The potential therapeutic significance of our model was supported by a differential sensitivity of PC-3/M cells to etomoxir, an inhibitor of long-chain fatty acid transport to the mitochondria.


Assuntos
Ácidos Graxos/metabolismo , Neoplasias da Próstata/metabolismo , Ácido Araquidônico/metabolismo , Transporte Biológico Ativo/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional , Ácidos Docosa-Hexaenoicos/metabolismo , Eicosanoides/metabolismo , Transição Epitelial-Mesenquimal , Compostos de Epóxi/farmacologia , Ácidos Graxos/química , Humanos , Masculino , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Modelos Biológicos , Invasividade Neoplásica , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Transcriptoma
7.
Oncotarget ; 8(48): 83384-83406, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137351

RESUMO

MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization in vivo. MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formed in vivo by cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells.

8.
Mol Syst Biol ; 13(10): 940, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978620

RESUMO

Cyclin-dependent kinases (CDK) are rational cancer therapeutic targets fraught with the development of acquired resistance by tumor cells. Through metabolic and transcriptomic analyses, we show that the inhibition of CDK4/6 leads to a metabolic reprogramming associated with gene networks orchestrated by the MYC transcription factor. Upon inhibition of CDK4/6, an accumulation of MYC protein ensues which explains an increased glutamine metabolism, activation of the mTOR pathway and blunting of HIF-1α-mediated responses to hypoxia. These MYC-driven adaptations to CDK4/6 inhibition render cancer cells highly sensitive to inhibitors of MYC, glutaminase or mTOR and to hypoxia, demonstrating that metabolic adaptations to antiproliferative drugs unveil new vulnerabilities that can be exploited to overcome acquired drug tolerance and resistance by cancer cells.


Assuntos
Perfilação da Expressão Gênica/métodos , Metabolômica/métodos , Neoplasias/metabolismo , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/farmacologia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Glutamina/metabolismo , Células HCT116 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Neoplasias/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
9.
Oncotarget ; 7(32): 51875-51897, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27391434

RESUMO

Metabolic reprogramming, a crucial cancer hallmark, shifts metabolic pathways such as glycolysis, tricarboxylic acid cycle or lipogenesis, to enable the growth characteristics of cancer cells. Here, we provide evidence that transketolase-like 1 (TKTL1) orchestrates aerobic glycolysis, fatty acid and nucleic acid synthesis, glutamine metabolism, protection against oxidative stress and cell proliferation. Furthermore, silencing of TKTL1 reduced the levels of sphingolipids such as lactosylceramide (a sphingolipid regulating cell survival, proliferation and angiogenesis) and phosphatidylinositol (which activates PI3K/Akt/mTOR signaling). Thus, in addition to its well-known roles in glucose and amino acid metabolism, TKTL1 also regulates lipid metabolism. In conclusion, our study provides unprecedented evidence that TKTL1 plays central roles in major metabolic processes subject to reprogramming in cancer cells and thus identifies TKTL1 as a promising target for new anti-cancer therapies.


Assuntos
Metaboloma , Neoplasias/metabolismo , Transcetolase/metabolismo , Linhagem Celular Tumoral , Glicólise , Humanos
10.
Stem Cells ; 34(5): 1163-76, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27146024

RESUMO

In solid tumors, cancer stem cells (CSCs) can arise independently of epithelial-mesenchymal transition (EMT). In spite of recent efforts, the metabolic reprogramming associated with CSC phenotypes uncoupled from EMT is poorly understood. Here, by using metabolomic and fluxomic approaches, we identify major metabolic profiles that differentiate metastatic prostate epithelial CSCs (e-CSCs) from non-CSCs expressing a stable EMT. We have found that the e-CSC program in our cellular model is characterized by a high plasticity in energy substrate metabolism, including an enhanced Warburg effect, a greater carbon and energy source flexibility driven by fatty acids and amino acid metabolism and an essential reliance on the proton buffering capacity conferred by glutamine metabolism. An analysis of transcriptomic data yielded a metabolic gene signature for our e-CSCs consistent with the metabolomics and fluxomics analyses that correlated with tumor progression and metastasis in prostate cancer and in 11 additional cancer types. Interestingly, an integrated metabolomics, fluxomics, and transcriptomics analysis allowed us to identify key metabolic players regulated at the post-transcriptional level, suggesting potential biomarkers and therapeutic targets to effectively forestall metastasis. Stem Cells 2016;34:1163-1176.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Metabolômica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Aminoácidos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Progressão da Doença , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Ácidos Graxos/biossíntese , Perfilação da Expressão Gênica , Genes Neoplásicos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Concentração de Íons de Hidrogênio , Mesoderma/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NADP/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Transcrição Gênica/efeitos dos fármacos
11.
Mol Cancer ; 13: 237, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25331979

RESUMO

BACKGROUND: Tumor cell subpopulations can either compete with each other for nutrients and physical space within the tumor niche, or co-operate for enhanced survival, or replicative or metastatic capacities. Recently, we have described co-operative interactions between two clonal subpopulations derived from the PC-3 prostate cancer cell line, in which the invasiveness of a cancer stem cell (CSC)-enriched subpopulation (PC-3M, or M) is enhanced by a non-CSC subpopulation (PC-3S, or S), resulting in their accelerated metastatic dissemination. METHODS: M and S secretomes were compared by SILAC (Stable Isotope Labeling by Aminoacids in Cell Culture). Invasive potential in vitro of M cells was analyzed by Transwell-Matrigel assays. M cells were co-injected with S cells in the dorsal prostate of immunodeficient mice and monitored by bioluminescence for tumor growth and metastatic dissemination. SPARC levels were determined by immunohistochemistry and real-time RT-PCR in tumors and by ELISA in plasma from patients with metastatic or non-metastatic prostate cancer. RESULTS: Comparative secretome analysis yielded 213 proteins differentially secreted between M and S cells. Of these, the protein most abundantly secreted in S relative to M cells was SPARC. Immunodepletion of SPARC inhibited the enhanced invasiveness of M induced by S conditioned medium. Knock down of SPARC in S cells abrogated the capacity of its conditioned medium to enhance the in vitro invasiveness of M cells and compromised their potential to boost the metastatic behavior of M cells in vivo. In most primary human prostate cancer samples, SPARC was expressed in the epithelial tumoral compartment of metastatic cases. CONCLUSIONS: The matricellular protein SPARC, secreted by a prostate cancer clonal tumor cell subpopulation displaying non-CSC properties, is a critical mediator of paracrine effects exerted on a distinct tumor cell subpopulation enriched in CSC. This paracrine interaction results in an enhanced metastatic behavior of the CSC-enriched tumor subpopulation. SPARC is expressed in the neoplastic cells of primary prostate cancer samples from metastatic cases, and could thus constitute a tumor progression biomarker and a therapeutic target in advanced prostate cancer.


Assuntos
Metástase Linfática/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Osteonectina/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Epitélio/efeitos dos fármacos , Epitélio/patologia , Espaço Extracelular/metabolismo , Humanos , Masculino , Invasividade Neoplásica
12.
Mol Cancer ; 13: 74, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24684754

RESUMO

BACKGROUND: PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression. METHODS: Stable PTOV1 knockdown or overexpression were performed by lentiviral transduction. Protein interactions were analyzed by co-immunoprecipitation, pull-down and/or immunofluorescence. Endogenous gene expression was analyzed by real time RT-PCR and/or Western blotting. Exogenous promoter activities were studied by luciferase assays. Gene promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). In vivo studies were performed in the Drosophila melanogaster wing, the SCID-Beige mouse model, and human prostate cancer tissues and metastasis. The Excel package was used for statistical analysis. RESULTS: Knockdown of PTOV1 in prostate epithelial cells and HaCaT skin keratinocytes caused the upregulation, and overexpression of PTOV1 the downregulation, of the Notch target genes HEY1 and HES1, suggesting that PTOV1 counteracts Notch signaling. Under conditions of inactive Notch signaling, endogenous PTOV1 associated with the HEY1 and HES1 promoters, together with components of the Notch repressor complex. Conversely, expression of active Notch1 provoked the dismissal of PTOV1 from these promoters. The antagonist role of PTOV1 on Notch activity was corroborated in the Drosophila melanogaster wing, where human PTOV1 exacerbated Notch deletion mutant phenotypes and suppressed the effects of constitutively active Notch. PTOV1 was required for optimal in vitro invasiveness and anchorage-independent growth of PC-3 cells, activities counteracted by Notch, and for their efficient growth and metastatic spread in vivo. In prostate tumors, the overexpression of PTOV1 was associated with decreased expression of HEY1 and HES1, and this correlation was significant in metastatic lesions. CONCLUSIONS: High levels of the adaptor protein PTOV1 counteract the transcriptional activity of Notch. Our evidences link the pro-oncogenic and pro-metastatic effects of PTOV1 in prostate cancer to its inhibitory activity on Notch signaling and are supportive of a tumor suppressor role of Notch in prostate cancer progression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/biossíntese , Proteínas de Homeodomínio/biossíntese , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Drosophila melanogaster , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/patologia , Receptores Notch/biossíntese , Transdução de Sinais/genética , Fatores de Transcrição HES-1 , Ativação Transcricional/genética
13.
PLoS One ; 8(10): e78097, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205108

RESUMO

Lymph node involvement is a major prognostic variable in breast cancer. Whether the molecular mechanisms that drive breast cancer cells to colonize lymph nodes are shared with their capacity to form distant metastases is yet to be established. In a transcriptomic survey aimed at identifying molecular factors associated with lymph node involvement of ductal breast cancer, we found that luminal differentiation, assessed by the expression of estrogen receptor (ER) and/or progesterone receptor (PR) and GATA3, was only infrequently lost in node-positive primary tumors and in matched lymph node metastases. The transcription factor GATA3 critically determines luminal lineage specification of mammary epithelium and is widely considered a tumor and metastasis suppressor in breast cancer. Strong expression of GATA3 and ER in a majority of primary node-positive ductal breast cancer was corroborated by quantitative RT-PCR and immunohistochemistry in the initial sample set, and by immunohistochemistry in an additional set from 167 patients diagnosed of node-negative and -positive primary infiltrating ductal breast cancer, including 102 samples from loco-regional lymph node metastases matched to their primary tumors, as well as 37 distant metastases. These observations suggest that loss of luminal differentiation is not a major factor driving the ability of breast cancer cells to colonize regional lymph nodes.


Assuntos
Carcinoma Ductal de Mama/metabolismo , Linfonodos/metabolismo , Feminino , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Humanos , Imuno-Histoquímica , Metástase Linfática/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Arch Esp Urol ; 66(5): 475-86, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23793765

RESUMO

Tumors constitute complex ecosystems with multiple interactions among neoplastic cells displaying various phenotypes and functions and where the tumoral niche is built with an active participation of the host environment that also impacts the malignant progression of the tumor cells. Irrespective of the cell of origin of prostate adenocarcinoma, mounting evidences support the existence of a hierarchy within neoplastic prostate cells that contributes to the heterogeneity of these tumors. At the origin of this hierarchy are small populations of tumor cells with high self-renewal potential and also capable of generating progeny tumor cells that lose self-renewal properties as they acquire more differentiated phenotypes. These cancer stem cells (CSC) depend on active gene networks that confer them with their self-renewal capacity through symmetrical divisions whereas they can also undergo asymmetrical division and differentiation either as stochastic events or in response to environmental cues. Although new experimental evidences indicate that this is can be a reversible process, thus blurring the distinction between CSCs and non-CSCs, the former are considered as the drivers of tumor growth and evolution, and thus a prime target for therapeutic intervention. Of particular importance in prostate cancer, CSCs may constitute the repository population of androgen-insensitive and chemotherapy-resistant tumor cells responsible for castration-resistant and chemotherapy-insensitive tumors, thus their identification and quantification in primary and metastatic neoplasms could play important roles in the management of this disease.


Assuntos
Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Adulto , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Orquiectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Células-Tronco/fisiologia
15.
J Lipid Res ; 54(5): 1207-20, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23423838

RESUMO

Acid ceramidase (AC) catalyzes the hydrolysis of ceramide into sphingosine, in turn a substrate of sphingosine kinases that catalyze its conversion into the mitogenic sphingosine-1-phosphate. AC is expressed at high levels in several tumor types and has been proposed as a cancer therapeutic target. Using a model derived from PC-3 prostate cancer cells, the highly tumorigenic, metastatic, and chemoresistant clone PC-3/Mc expressed higher levels of the AC ASAH1 than the nonmetastatic clone PC-3/S. Stable knockdown of ASAH1 in PC-3/Mc cells caused an accumulation of ceramides, inhibition of clonogenic potential, increased requirement for growth factors, and inhibition of tumorigenesis and lung metastases. We developed de novo ASAH1 inhibitors, which also caused a dose-dependent accumulation of ceramides in PC-3/Mc cells and inhibited their growth and clonogenicity. Finally, immunohistochemical analysis of primary prostate cancer samples showed that higher levels of ASAH1 were associated with more advanced stages of this neoplasia. These observations confirm ASAH1 as a therapeutic target in advanced and chemoresistant forms of prostate cancer and suggest that our new potent and specific AC inhibitors could act by counteracting critical growth properties of these highly aggressive tumor cells.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Ceramidase Ácida/genética , Terapia de Alvo Molecular , Neoplasias da Próstata/genética , Ceramidase Ácida/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Ceramidas/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Lisofosfolipídeos/metabolismo , Masculino , Metástase Neoplásica , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Esfingosina/análogos & derivados , Esfingosina/metabolismo
16.
Exp Cell Res ; 318(18): 2365-76, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22814251

RESUMO

The induction of DNA double-strand breaks (DSBs) elicits a plethora of responses that redirect many cellular functions to the vital task of repairing the injury, collectively known as the DNA damage response (DDR). We have found that, in the absence of DNA damage, the DSB repair factors RNF8 and BRCA1 are associated with the nucleolus. Shortly after exposure of cells to γ-radiation, RNF8 and BRCA1 translocated from the nucleolus to damage foci, a traffic that was reverted several hours after the damage. RNF8 interacted through its FHA domain with the ribosomal protein RPSA, and knockdown of RPSA caused a depletion of nucleolar RNF8 and BRCA1, suggesting that the interaction of RNF8 with RPSA is critical for the nucleolar localization of these DDR factors. Knockdown of RPSA or RNF8 impaired bulk protein translation, as did γ-irradiation, the latter being partially countered by overexpression of exogenous RNF8. Our results suggest that RNF8 and BRCA1 are anchored to the nucleolus through reversible interactions with RPSA and that, in addition to its known functions in DDR, RNF8 may play a role in protein synthesis, possibly linking the nucleolar exit of this factor to the attenuation of protein synthesis in response to DNA damage.


Assuntos
Proteína BRCA1/metabolismo , Nucléolo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteína BRCA1/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ubiquitina-Proteína Ligases
17.
J Clin Invest ; 122(5): 1849-68, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22505459

RESUMO

Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs.


Assuntos
Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Forma Celular , Técnicas de Cocultura , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estadiamento de Neoplasias , Transplante de Neoplasias , Neoplasias da Próstata , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição da Família Snail , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Neoplasias da Bexiga Urinária , Homeobox 1 de Ligação a E-box em Dedo de Zinco
18.
Nucleic Acids Res ; 40(1): 196-205, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21911360

RESUMO

Pairing of a given E3 ubiquitin ligase with different E2s allows synthesis of ubiquitin conjugates of different topologies. While this phenomenon contributes to functional diversity, it remains largely unknown how a single E3 ubiquitin ligase recognizes multiple E2s, and whether identical structural requirements determine their respective interactions. The E3 ubiquitin ligase RNF8 that plays a critically important role in transducing DNA damage signals, interacts with E2s UBCH8 and UBC13, and catalyzes both K48- and K63-linked ubiquitin chains. Interestingly, we report here that a single-point mutation (I405A) on the RNF8 polypeptide uncouples its ability in catalyzing K48- and K63-linked ubiquitin chain formation. Accordingly, while RNF8 interacted with E2s UBCH8 and UBC13, its I405A mutation selectively disrupted its functional interaction with UBCH8, and impaired K48-based poly-ubiquitylation reactions. In contrast, RNF8 I405A preserved its interaction with UBC13, synthesized K63-linked ubiquitin chains, and assembled BRCA1 and 53BP1 at sites of DNA breaks. Together, our data suggest that RNF8 regulates K48- and K63-linked poly-ubiquitylation via differential RING-dependent interactions with its E2s UBCH8 and UBC13, respectively.


Assuntos
Lisina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Animais , Células Cultivadas , Dano ao DNA , Camundongos , Dados de Sequência Molecular , Mutação Puntual , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
19.
Ann N Y Acad Sci ; 1210: 17-24, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20973795

RESUMO

Despite its high incidence as the second most common tumor in males worldwide, primary prostate cancer has been associated with few recurrent chromosomal gains and deletions that are consistent across various studies. Few studies have explored how chromosomal alterations are coupled to abnormal gene expression. Here, we review the major genomic aberrations associated with prostate cancer and describe how detailed transcriptional and computational analyses allowed us to discover a recurrent chromosomal gain in a small region on chromosome 17. Fluorescent in situ hybridization confirmed the presence of a copy number gain in 17q25.3 in tumor-associated preneoplastic lesions of the prostate, 65% of primary tumors, and metastatic samples. These results suggest the involvement of this gain at all steps of prostate cancer progression.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 17/genética , Mutação , Neoplasias da Próstata/genética , Mapeamento Cromossômico , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Masculino , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Neoplasias da Próstata/patologia , Transcrição Gênica
20.
PLoS One ; 5(6): e11403, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20613989

RESUMO

BACKGROUND: Several pathways that control cell survival under stress, namely RNF8-dependent DNA damage recognition and repair, PCNA-dependent DNA damage tolerance and activation of NF-kappaB by extrinsic signals, are regulated by the tagging of key proteins with lysine 63-based polyubiquitylated chains, catalyzed by the conserved ubiquitin conjugating heterodimeric enzyme Ubc13-Uev. METHODOLOGY/PRINCIPAL FINDINGS: By applying a selection based on in vivo protein-protein interaction assays of compounds from a combinatorial chemical library followed by virtual screening, we have developed small molecules that efficiently antagonize the Ubc13-Uev1 protein-protein interaction, inhibiting the enzymatic activity of the heterodimer. In mammalian cells, they inhibit lysine 63-type polyubiquitylation of PCNA, inhibit activation of NF-kappaB by TNF-alpha and sensitize tumor cells to chemotherapeutic agents. One of these compounds significantly inhibited invasiveness, clonogenicity and tumor growth of prostate cancer cells. CONCLUSIONS/SIGNIFICANCE: This is the first development of pharmacological inhibitors of non-canonical polyubiquitylation that show that these compounds produce selective biological effects with potential therapeutic applications.


Assuntos
Proteínas/metabolismo , Ubiquitinação , Animais , Catálise , Células HeLa , Humanos , Camundongos , Modelos Animais , Modelos Moleculares , NF-kappa B/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA