Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 3(20): 3092-3098, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31648331

RESUMO

In addition to their primary roles in hemostasis and thrombosis, platelets participate in many other physiological and pathological processes, including, but not limited to inflammation, wound healing, tumor metastasis, and angiogenesis. Among their most interesting properties is the large number of bioactive proteins stored in their α-granules, the major storage granule of platelets. We previously showed that platelets differentially package pro- and antiangiogenic proteins in distinct α-granules that undergo differential release upon platelet activation. Nevertheless, how megakaryocytes achieve differential packaging is not fully understood. In this study, we use a mouse megakaryocyte culture system and endocytosis assay to establish when and where differential packaging occurs during platelet production. Live cell microscopy of primary mouse megakaryocytes incubated with fluorescently conjugated fibrinogen and endostatin showed differential endocytosis and packaging of the labeled proteins into distinct α-granule subpopulations. Super-resolution microscopy of mouse proplatelets and human whole-blood platelet α-granules simultaneously probed for 2 different membrane proteins (VAMP-3 and VAMP-8), and multiple granular content proteins (bFGF, ENDO, TSP, VEGF) confirmed differential packaging of protein contents into α-granules. These data suggest that megakaryocytes differentially sort and package α-granule contents, which are preserved as α-granule subpopulations during proplatelet extension and platelet production.


Assuntos
Plaquetas/metabolismo , Grânulos Citoplasmáticos/metabolismo , Megacariócitos/metabolismo , Animais , Transporte Biológico , Biomarcadores , Diferenciação Celular , Imunofluorescência , Humanos , Megacariócitos/citologia , Camundongos , Trombopoese
2.
J Clin Invest ; 127(5): 1714-1724, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28375155

RESUMO

The growth factor receptor Kit is involved in hematopoietic and nonhematopoietic development. Mice bearing Kit defects lack mast cells; however, strains bearing different Kit alleles exhibit diverse phenotypes. Herein, we investigated factors underlying differential sensitivity to IgG-mediated arthritis in 2 mast cell-deficient murine lines: KitWsh/Wsh, which develops robust arthritis, and KitW/Wv, which does not. Reciprocal bone marrow transplantation between KitW/Wv and KitWsh/Wsh mice revealed that arthritis resistance reflects a hematopoietic defect in addition to mast cell deficiency. In KitW/Wv mice, restoration of susceptibility to IgG-mediated arthritis was neutrophil independent but required IL-1 and the platelet/megakaryocyte markers NF-E2 and glycoprotein VI. In KitW/Wv mice, platelets were present in numbers similar to those in WT animals and functionally intact, and transfer of WT platelets did not restore arthritis susceptibility. These data implicated a platelet-independent role for the megakaryocyte, a Kit-dependent lineage that is selectively deficient in KitW/Wv mice. Megakaryocytes secreted IL-1 directly and as a component of circulating microparticles, which activated synovial fibroblasts in an IL-1-dependent manner. Transfer of WT but not IL-1-deficient megakaryocytes restored arthritis susceptibility to KitW/Wv mice. These findings identify functional redundancy among Kit-dependent hematopoietic lineages and establish an unanticipated capacity of megakaryocytes to mediate IL-1-driven systemic inflammatory disease.


Assuntos
Artrite Experimental , Megacariócitos , Proteínas Proto-Oncogênicas c-kit , Membrana Sinovial , Animais , Artrite Experimental/genética , Artrite Experimental/imunologia , Artrite Experimental/patologia , Fibroblastos/imunologia , Fibroblastos/patologia , Imunoglobulina G/imunologia , Interleucina-1/genética , Interleucina-1/imunologia , Mastócitos/imunologia , Mastócitos/patologia , Megacariócitos/imunologia , Megacariócitos/patologia , Camundongos , Camundongos Knockout , Subunidade p45 do Fator de Transcrição NF-E2/genética , Subunidade p45 do Fator de Transcrição NF-E2/imunologia , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/imunologia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/imunologia , Membrana Sinovial/imunologia , Membrana Sinovial/patologia
3.
Platelets ; 28(5): 472-477, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28112988

RESUMO

Platelets, responsible for clot formation and blood vessel repair, are produced by megakaryocytes in the bone marrow. Platelets are critical for hemostasis and wound healing, and are often provided following surgery, chemotherapy, and major trauma. Despite their importance, platelets today are derived exclusively from human volunteer donors. They have a shelf life of just five days, making platelet shortages common during long weekends, civic holidays, bad weather, and during major emergencies when platelets are needed most. Megakaryocytes in the bone marrow generate platelets by extruding long cytoplasmic extensions called proplatelets through gaps/fenestrations in blood vessels. Proplatelets serve as assembly lines for platelet production by sequentially releasing platelets and large discoid-shaped platelet intermediates called preplatelets into the circulation. Recent advances in platelet bioreactor development have aimed to mimic the key physiological characteristics of bone marrow, including extracellular matrix composition/stiffness, blood vessel architecture comprising tissue-specific microvascular endothelium, and shear stress. Nevertheless, how complex interactions within three-dimensional (3D) microenvironments regulate thrombopoiesis remains poorly understood, and the technical challenges associated with designing and manufacturing biomimetic microfluidic devices are often under-appreciated and under-reported. We have previously reviewed the major cell culture, platelet quality assessment, and regulatory roadblocks that must be overcome to make human platelet production possible for clinical use [1]. This review builds on our previous manuscript by: (1) detailing the historical evolution of platelet bioreactor design to recapitulate native platelet production ex vivo, and (2) identifying the associated challenges that still need to be addressed to further scale and validate these devices for commercial application. While platelets are among the first cells whose ex vivo production is spearheading major engineering advancements in microfluidic design, the resulting discoveries will undoubtedly extend to the production of other human tissues. This work is critical to identify the physiological characteristics of relevant 3D tissue-specific microenvironments that drive cell differentiation and elaborate upon how these are disrupted in disease. This is a burgeoning field whose future will define not only the ex vivo production of platelets and development of targeted therapies for thrombocytopenia, but the promise of regenerative medicine for the next century.


Assuntos
Reatores Biológicos , Plaquetas , Técnicas de Cultura de Células , Megacariócitos , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Humanos , Megacariócitos/citologia , Megacariócitos/metabolismo
4.
Blood ; 127(11): 1493-501, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26755713

RESUMO

Lysyl oxidase (LOX) is overexpressed in various pathologies associated with thrombosis, such as arterial stenosis and myeloproliferative neoplasms (MPNs). LOX is elevated in the megakaryocytic lineage of mouse models of MPNs and in patients with MPNs. To gain insight into the role of LOX in thrombosis and platelet function without compounding the influences of other pathologies, transgenic mice expressing LOX in wild-type megakaryocytes and platelets (Pf4-Lox(tg/tg)) were generated. Pf4-Lox(tg/tg) mice had a normal number of platelets; however, time to vessel occlusion after endothelial injury was significantly shorter in Pf4-Lox(tg/tg) mice, indicating a higher propensity for thrombus formation in vivo. Exploring underlying mechanisms, we found that Pf4-Lox(tg/tg) platelets adhere better to collagen and have greater aggregation response to lower doses of collagen compared with controls. Platelet activation in response to the ligand for collagen receptor glycoprotein VI (cross-linked collagen-related peptide) was unaffected. However, the higher affinity of Pf4-Lox(tg/tg) platelets to the collagen sequence GFOGER implies that the collagen receptor integrin α2ß1 is affected by LOX. Taken together, our findings demonstrate that LOX enhances platelet activation and thrombosis.


Assuntos
Plaquetas/efeitos dos fármacos , Colágeno/farmacologia , Ativação Plaquetária/fisiologia , Proteína-Lisina 6-Oxidase/fisiologia , Trombofilia/enzimologia , Animais , Plaquetas/citologia , Lesões das Artérias Carótidas/complicações , Trombose das Artérias Carótidas/etiologia , Integrina alfa2beta1/fisiologia , Megacariócitos/enzimologia , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/farmacologia , Adesividade Plaquetária/genética , Adesividade Plaquetária/fisiologia , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/genética , Fator Plaquetário 4/genética , Regiões Promotoras Genéticas , Proteína-Lisina 6-Oxidase/genética , Ratos , Trombofilia/genética
5.
Stem Cell Reports ; 3(5): 817-31, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25418726

RESUMO

Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid "surge" capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the ß2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness.


Assuntos
Plaquetas/citologia , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Megacariócitos/citologia , Animais , Antígenos CD34/metabolismo , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Técnicas de Cultura de Células/métodos , Proliferação de Células , Células Cultivadas , Técnicas de Inativação de Genes , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Leucossialina/metabolismo , Masculino , Megacariócitos/metabolismo , Megacariócitos/ultraestrutura , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia Eletrônica , Microscopia de Fluorescência , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transfusão de Plaquetas/métodos , Reprodutibilidade dos Testes , Transplante Heterólogo , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
6.
Br J Haematol ; 165(2): 227-36, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24499183

RESUMO

Platelets are essential for haemostasis, and thrombocytopenia (platelet counts <150 × 10(9) /l) is a major clinical problem encountered across a number of conditions, including immune thrombocytopenic purpura, myelodysplastic syndromes, chemotherapy, aplastic anaemia, human immunodeficiency virus infection, complications during pregnancy and delivery, and surgery. Circulating blood platelets are specialized cells that function to prevent bleeding and minimize blood vessel injury. Platelets circulate in their quiescent form, and upon stimulation, activate to release their granule contents and spread on the affected tissue to create a physical barrier that prevents blood loss. The current model of platelet formation states that large progenitor cells in the bone marrow, called megakaryocytes, release platelets by extending long, branching processes, designated proplatelets, into sinusoidal blood vessels. This review will focus on different factors that impact megakaryocyte development, proplatelet formation and platelet release. It will highlight recent studies on thrombopoeitin-dependent megakaryocyte maturation, endomitosis and granule formation, cytoskeletal contributions to proplatelet formation, the role of apoptosis, and terminal platelet formation and release.


Assuntos
Megacariócitos/fisiologia , Trombopoese/fisiologia , Actinas/metabolismo , Animais , Apoptose , Plaquetas/citologia , Plaquetas/metabolismo , Membrana Celular/metabolismo , Humanos , Microtúbulos/metabolismo , Proteína Quinase C/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
7.
Blood ; 120(24): 4859-68, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22972982

RESUMO

We recently identified 68 genomic loci where common sequence variants are associated with platelet count and volume. Platelets are formed in the bone marrow by megakaryocytes, which are derived from hematopoietic stem cells by a process mainly controlled by transcription factors. The homeobox transcription factor MEIS1 is uniquely transcribed in megakaryocytes and not in the other lineage-committed blood cells. By ChIP-seq, we show that 5 of the 68 loci pinpoint a MEIS1 binding event within a group of 252 MK-overexpressed genes. In one such locus in DNM3, regulating platelet volume, the MEIS1 binding site falls within a region acting as an alternative promoter that is solely used in megakaryocytes, where allelic variation dictates different levels of a shorter transcript. The importance of dynamin activity to the latter stages of thrombopoiesis was confirmed by the observation that the inhibitor Dynasore reduced murine proplatelet for-mation in vitro.


Assuntos
Plaquetas/metabolismo , Dinamina III/genética , Genoma Humano/genética , Proteínas de Homeodomínio/genética , Megacariócitos/metabolismo , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas/genética , Animais , Sítios de Ligação/genética , Plaquetas/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Expressão Gênica , Variação Genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hidrazonas/farmacologia , Camundongos , Proteína Meis1 , Proteínas de Neoplasias/metabolismo , Contagem de Plaquetas , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Sítio de Iniciação de Transcrição , Transcrição Gênica
8.
Blood ; 120(11): 2317-29, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22806889

RESUMO

Serum response factor and its transcriptional cofactor MKL1 are critical for megakaryocyte maturation and platelet formation. We show that MKL2, a homologue of MKL1, is expressed in megakaryocytes and plays a role in megakaryocyte maturation. Using a megakaryocyte-specific Mkl2 knockout (KO) mouse on the conventional Mkl1 KO background to produce double KO (DKO) megakaryocytes and platelets, a critical role for MKL2 is revealed. The decrease in megakaryocyte ploidy and platelet counts of DKO mice is more severe than in Mkl1 KO mice. Platelet dysfunction in DKO mice is revealed by prolonged bleeding times and ineffective platelet activation in vitro in response to adenosine 5'-diphosphate. Electron microscopy and immunofluorescence of DKO megakaryocytes and platelets indicate abnormal cytoskeletal and membrane organization with decreased granule complexity. Surprisingly, the DKO mice have a more extreme thrombocytopenia than mice lacking serum response factor (SRF) expression in the megakaryocyte compartment. Comparison of gene expression reveals approximately 4400 genes whose expression is differentially affected in DKO compared with megakaryocytes deficient in SRF, strongly suggesting that MKL1 and MKL2 have both SRF-dependent and SRF-independent activity in megakaryocytopoiesis.


Assuntos
Plaquetas/citologia , Plaquetas/metabolismo , Hematopoese , Megacariócitos/citologia , Megacariócitos/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Tempo de Sangramento , Plaquetas/ultraestrutura , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Cruzamentos Genéticos , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Perfilação da Expressão Gênica , Megacariócitos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Ativação Plaquetária , Trombocitopenia/etiologia , Transativadores/genética , Fatores de Transcrição/genética
9.
Blood ; 120(10): 1975-84, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22665936

RESUMO

Proplatelet production represents a terminal stage of megakaryocyte development during which long, branching processes composed of platelet-sized swellings are extended and released into the surrounding culture. Whereas the cytoskeletal mechanics driving these transformations have been the focus of many studies, significant limitations in our ability to quantify the rate and extent of proplatelet production have restricted the field to qualitative analyses of a limited number of cells over short intervals. A novel high-content, quantitative, live-cell imaging assay using the IncuCyte system (Essen BioScience) was therefore developed to measure the rate and extent of megakaryocyte maturation and proplatelet production under live culture conditions for extended periods of time. As proof of concept, we used this system in the present study to establish a mechanism by which trastuzumab emtansine (T-DM1), an Ab-drug conjugate currently in clinical development for cancer, affects platelet production. High-content analysis of primary cell cultures revealed that T-DM1 is taken up by mouse megakaryocytes, inhibits megakaryocyte differentiation, and disrupts proplatelet formation by inducing abnormal tubulin organization and suppressing microtubule dynamic instability. Defining the pathways by which therapeutics such as T-DM1 affect megakaryocyte differentiation and proplatelet production may yield strategies to manage drug-induced thrombocytopenias.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Plaquetas/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Maitansina/análogos & derivados , Megacariócitos/efeitos dos fármacos , Trombocitopenia/induzido quimicamente , Ado-Trastuzumab Emtansina , Animais , Bioensaio , Plaquetas/fisiologia , Plaquetas/ultraestrutura , Diferenciação Celular/fisiologia , Feto , Citometria de Fluxo , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/fisiologia , Maitansina/farmacologia , Megacariócitos/fisiologia , Megacariócitos/ultraestrutura , Camundongos , Microscopia de Fluorescência , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Imagem Molecular , Contagem de Plaquetas , Cultura Primária de Células , Trombocitopenia/prevenção & controle , Trombopoese/efeitos dos fármacos , Trombopoese/fisiologia , Trastuzumab , Tubulina (Proteína)/metabolismo
10.
Nat Commun ; 3: 852, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22617292

RESUMO

Megakaryocytes release large preplatelet intermediates into the sinusoidal blood vessels. Preplatelets convert into barbell-shaped proplatelets in vitro to undergo repeated abscissions that yield circulating platelets. These observations predict the presence of circular-preplatelets and barbell-proplatelets in blood, and two fundamental questions in platelet biology are what are the forces that determine barbell-proplatelet formation, and how is the final platelet size established. Here we provide insights into the terminal mechanisms of platelet production. We quantify circular-preplatelets and barbell-proplatelets in human blood in high-resolution fluorescence images, using a laser scanning cytometry assay. We demonstrate that force constraints resulting from cortical microtubule band diameter and thickness determine barbell-proplatelet formation. Finally, we provide a mathematical model for the preplatelet to barbell conversion. We conclude that platelet size is limited by microtubule bundling, elastic bending, and actin-myosin-spectrin cortex forces.


Assuntos
Microtúbulos/metabolismo , Actinas/metabolismo , Humanos , Microscopia de Fluorescência , Modelos Teóricos , Miosinas/metabolismo , Trombopoese/fisiologia
11.
Blood ; 115(6): 1267-76, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-19846887

RESUMO

The spontaneous mouse mutation "thrombocytopenia and cardiomyopathy" (trac) causes macrothrombocytopenia, prolonged bleeding times, anemia, leukopenia, infertility, cardiomyopathy, and shortened life span. Homozygotes show a 20-fold decrease in platelet numbers and a 3-fold increase in platelet size with structural alterations and functional impairments in activation and aggregation. Megakaryocytes in trac/trac mice are present in increased numbers, have poorly developed demarcation membrane systems, and have decreased polyploidy. The thrombocytopenia is not intrinsic to defects at the level of hematopoietic progenitor cells but is associated with a microenvironmental abnormality. The trac mutation maps to mouse chromosome 17, syntenic with human chromosome 2p21-22. A G to A mutation in exon 10 of the adenosine triphosphate (ATP)-binding cassette subfamily G, member 5 (Abcg5) gene, alters a tryptophan codon (UGG) to a premature stop codon (UAG). Crosses with mice doubly transgenic for the human ABCG5 and ABCG8 genes rescued platelet counts and volumes. ABCG5 and ABCG8 form a functional complex that limits dietary phytosterol accumulation. Phytosterolemia in trac/trac mice confirmed a functional defect in the ABCG5/ABCG8 transport system. The trac mutation provides a new clinically significant animal model for human phytosterolemia and provides a new means for studying the role of phytosterols in hematologic diseases and testing therapeutic interventions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Cardiomiopatias/genética , Modelos Animais de Doenças , Erros Inatos do Metabolismo Lipídico/genética , Lipoproteínas/fisiologia , Mutação/genética , Fitosteróis/metabolismo , Sitosteroides/metabolismo , Trombocitopenia/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Tempo de Sangramento , Cardiomiopatias/patologia , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Cruzamentos Genéticos , Feminino , Feto/citologia , Feto/metabolismo , Erros Inatos do Metabolismo Lipídico/patologia , Lipoproteínas/genética , Fígado/citologia , Fígado/metabolismo , Masculino , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Trombocitopenia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA