Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Transl Lung Cancer Res ; 13(3): 699-705, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38601449
2.
ChemMedChem ; : e202400013, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648251

RESUMO

Metastasis is responsible for about 90% of cancer deaths. Anti-metastatic drugs, termed as migrastatics, offer a distinctive therapeutic approach to address cancer migration and invasion. However, therapeutic exploitation of metastasis-specific targets remains limited, and the effective prevention and suppression of metastatic cancer continue to be elusive. Lysophosphatidic acid receptor 1 (LPA1) is activated by an endogenous lipid molecule LPA, leading to a diverse array of cellular activities. Previous studies have shown that the LPA/LPA1 axis supports the progression of metastasis for many types of cancer. In this study, we report the synthesis and biological evaluation of fluorine-containing triazole derivatives as potent LPA1 antagonists, offering potential as migrastatic drugs for triple negative breast cancer (TNBC). In particular, compound 12f, the most potent and highly selective in this series with an IC50 value of 16.0 nM in the cAMP assay and 18.4 nM in the calcium mobilization assay, inhibited cell survival, migration, and invasion in the TNBC cell line. Interestingly, the compound did not induce apoptosis in TNBC cells and demonstrated no cytotoxic effects. These results highlight the potential of LPA1 as a migrastatic target. Consequently, the LPA1 antagonists developed in this study hold promise as potential migrastatic candidates for TNBC.

3.
Cancers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958404

RESUMO

The success of PD-1/PD-L1-targeted therapy in lung cancer has resulted in great enthusiasm for additional immunotherapies in development to elicit similar survival benefits, particularly in patients who do not respond to or are ineligible for PD-1 blockade. CD47 is an immunosuppressive molecule that binds SIRPα on antigen-presenting cells to regulate an innate immune checkpoint that blocks phagocytosis and subsequent activation of adaptive tumor immunity. In lung cancer, CD47 expression is associated with poor survival and tumors with EGFR mutations, which do not typically respond to PD-1 blockade. Given its prognostic relevance, its role in facilitating immune escape, and the number of agents currently in clinical development, CD47 blockade represents a promising next-generation immunotherapy for lung cancer. In this review, we briefly summarize how tumors disrupt the cancer immunity cycle to facilitate immune evasion and their exploitation of immune checkpoints like the CD47-SIRPα axis. We also discuss approved immune checkpoint inhibitors and strategies for targeting CD47 that are currently being investigated. Finally, we review the literature supporting CD47 as a promising immunotherapeutic target in lung cancer and offer our perspective on key obstacles that must be overcome to establish CD47 blockade as the next standard of care for lung cancer therapy.

4.
Hepatology ; 77(3): 729-744, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35302667

RESUMO

BACKGROUND AND AIMS: Prognosis of HCC remains poor due to lack of effective therapies. Immune checkpoint inhibitors (ICIs) have delayed response and are only effective in a subset of patients. Treatments that could effectively shrink the tumors within a short period of time are idealistic to be employed together with ICIs for durable tumor suppressive effects. HCC acquires increased tolerance to aneuploidy. The rapid division of HCC cells relies on centrosome duplication. In this study, we found that polo-like kinase 4 (PLK4), a centrosome duplication regulator, represents a therapeutic vulnerability in HCC. APPROACH AND RESULTS: An orally available PLK4 inhibitor, CFI-400945, potently suppressed proliferating HCC cells by perturbing centrosome duplication. CFI-400945 induced endoreplication without stopping DNA replication, causing severe aneuploidy, DNA damage, micronuclei formation, cytosolic DNA accumulation, and senescence. The cytosolic DNA accumulation elicited the DEAD box helicase 41-stimulator of interferon genes-interferon regulatory factor 3/7-NF-κß cytosolic DNA sensing pathway, thereby driving the transcription of senescence-associated secretory phenotypes, which recruit immune cells. CFI-400945 was evaluated in liver-specific p53/phosphatase and tensin homolog knockout mouse HCC models established by hydrodynamic tail vein injection. Tumor-infiltrated immune cells were analyzed. CFI-400945 significantly impeded HCC growth and increased infiltration of cluster of differentiation 4-positive (CD4 + ), CD8 + T cells, macrophages, and natural killer cells. Combination therapy of CFI-400945 with anti-programmed death-1 showed a tendency to improve HCC survival. CONCLUSIONS: We show that by targeting a centrosome regulator, PLK4, to activate the cytosolic DNA sensing-mediated immune response, CFI-400945 effectively restrained tumor progression through cell cycle inhibition and inducing antitumor immunity to achieve a durable suppressive effect even in late-stage mouse HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Aneuploidia , Carcinoma Hepatocelular/patologia , Ciclo Celular , Linhagem Celular Tumoral , Neoplasias Hepáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo
5.
Pharmaceutics ; 14(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432707

RESUMO

Targeted drug and gene delivery using ultrasound and microbubbles (USMB) has the potential to treat several diseases. In vitro investigation of USMB-mediated delivery is of prime importance prior to in vivo studies because it is cost-efficient and allows for the rapid optimization of experimental parameters. Most in vitro USMB studies are carried out with non-clinical, research-grade ultrasound systems, which are not approved for clinical use and are difficult to replicate by other labs. A standardized, low-cost, and easy-to-use in vitro experimental setup using a clinical ultrasound system would facilitate the eventual translation of the technology to the bedside. In this paper, we report a modular 3D-printed experimental setup using a clinical ultrasound transducer that can be used to study USMB-mediated drug delivery. We demonstrate its utility for optimizing various cargo delivery parameters in the HEK293 cell line, as well as for the CMT167 lung carcinoma cell line, using dextran as a model drug. We found that the proportion of dextran-positive cells increases with increasing mechanical index and ultrasound treatment time and decreases with increasing pulse interval (PI). We also observed that dextran delivery is most efficient for a narrow range of microbubble concentrations.

6.
Sci Adv ; 8(36): eabq4293, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070391

RESUMO

Inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) are standard first-line treatments for metastatic ER+ breast cancer. However, acquired resistance to CDK4/6i invariably develops, and the molecular phenotypes and exploitable vulnerabilities associated with resistance are not yet fully characterized. We developed a panel of CDK4/6i-resistant breast cancer cell lines and patient-derived organoids and demonstrate that a subset of resistant models accumulates mitotic segregation errors and micronuclei, displaying increased sensitivity to inhibitors of mitotic checkpoint regulators TTK and Aurora kinase A/B. RB1 loss, a well-recognized mechanism of CDK4/6i resistance, causes such mitotic defects and confers enhanced sensitivity to TTK inhibition. In these models, inhibition of TTK with CFI-402257 induces premature chromosome segregation, leading to excessive mitotic segregation errors, DNA damage, and cell death. These findings nominate the TTK inhibitor CFI-402257 as a therapeutic strategy for a defined subset of ER+ breast cancer patients who develop resistance to CDK4/6i.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Neoplasias , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética
7.
Mol Cancer Ther ; 18(10): 1775-1786, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31358662

RESUMO

The spindle assembly checkpoint maintains genomic integrity. A key component is tyrosine threonine kinase (TTK, also known as Mps1). TTK antagonism is hypothesized to cause genomic instability and cell death. Interrogating The Cancer Genome Atlas revealed high TTK expression in lung adenocarcinomas and squamous cell cancers versus the normal lung (P < 0.001). This correlated with an unfavorable prognosis in examined lung adenocarcinoma cases (P = 0.007). TTK expression profiles in lung tumors were independently assessed by RNA in situ hybridization. CFI-402257 is a highly selective TTK inhibitor. Its potent antineoplastic effects are reported here against a panel of well-characterized murine and human lung cancer cell lines. Significant antitumorigenic activity followed independent treatments of athymic mice bearing human lung cancer xenografts (6.5 mg/kg, P < 0.05; 8.5 mg/kg, P < 0.01) and immunocompetent mice with syngeneic lung cancers (P < 0.001). CFI-402257 antineoplastic mechanisms were explored. CFI-402257 triggered aneuploidy and apoptotic death of lung cancer cells without changing centrosome number. Reverse phase protein arrays (RPPA) of vehicle versus CFI-402257-treated lung cancers were examined using more than 300 critical growth-regulatory proteins. RPPA bioinformatic analyses discovered CFI-402257 enhanced MAPK signaling, implicating MAPK antagonism in augmenting TTK inhibitory effects. This was independently confirmed using genetic and pharmacologic repression of MAPK that promoted CFI-402257 anticancer actions. TTK antagonism exerted marked antineoplastic effects against lung cancers and MAPK inhibition cooperated. Future work should determine whether CFI-402257 treatment alone or with a MAPK inhibitor is active in the lung cancer clinic.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Poliploidia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Anáfase/efeitos dos fármacos , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Centrossomo/efeitos dos fármacos , Centrossomo/metabolismo , Humanos , Camundongos , Proteínas Tirosina Quinases/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia
8.
Proc Natl Acad Sci U S A ; 116(9): 3604-3613, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30733286

RESUMO

Cancer cells have higher reactive oxygen species (ROS) than normal cells, due to genetic and metabolic alterations. An emerging scenario is that cancer cells increase ROS to activate protumorigenic signaling while activating antioxidant pathways to maintain redox homeostasis. Here we show that, in basal-like and BRCA1-related breast cancer (BC), ROS levels correlate with the expression and activity of the transcription factor aryl hydrocarbon receptor (AhR). Mechanistically, ROS triggers AhR nuclear accumulation and activation to promote the transcription of both antioxidant enzymes and the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). In a mouse model of BRCA1-related BC, cancer-associated AhR and AREG control tumor growth and production of chemokines to attract monocytes and activate proangiogenic function of macrophages in the tumor microenvironment. Interestingly, the expression of these chemokines as well as infiltration of monocyte-lineage cells (monocyte and macrophages) positively correlated with ROS levels in basal-like BC. These data support the existence of a coordinated link between cancer-intrinsic ROS regulation and the features of tumor microenvironment. Therapeutically, chemical inhibition of AhR activity sensitizes human BC models to Erlotinib, a selective EGFR tyrosine kinase inhibitor, suggesting a promising combinatorial anticancer effect of AhR and EGFR pathway inhibition. Thus, AhR represents an attractive target to inhibit redox homeostasis and modulate the tumor promoting microenvironment of basal-like and BRCA1-associated BC.


Assuntos
Anfirregulina/genética , Proteína BRCA1/genética , Neoplasias da Mama/genética , Receptores de Hidrocarboneto Arílico/genética , Adulto , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptores ErbB/genética , Cloridrato de Erlotinib/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica , Homeostase/genética , Humanos , Camundongos , Pessoa de Meia-Idade , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/genética
9.
J Thorac Oncol ; 14(4): 656-671, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30578931

RESUMO

INTRODUCTION: Targeted therapies for lung adenocarcinoma (LUAD) have improved patient outcomes; however, drug resistance remains a major problem. One strategy to achieve durable response is to develop combination-based therapies that target both mutated oncogenes and key modifiers of oncogene-driven tumorigenesis. This is based on the premise that mutated oncogenes, although necessary, are not sufficient for malignant transformation. We aimed to uncover genetic alterations that cooperate with mutant EGFR during LUAD development. METHODS: We performed integrative genomic analyses, combining copy number, gene expression and mutational information for over 500 LUAD tumors. Co-immunoprecipitation and Western blot analysis were performed in LUAD cell lines to confirm candidate interactions while RNA interference and gene overexpression were used for in vitro and in vivo functional assessment. RESULTS: We identified frequent amplifications/deletions of chromosomal regions affecting the activity of genes specifically in the context of EGFR mutation, including amplification of the mutant EGFR allele and deletion of dual specificity phosphatase 4 (DUSP4), which have both previously been reported. In addition, we identified the novel amplification of a segment of chromosome arm 16p in mutant-EGFR tumors corresponding to increased expression of Golgi Associated, Gamma Adaptin Ear Containing, ARF Binding Protein 2 (GGA2), which functions in protein trafficking and sorting. We found that GGA2 interacts with EGFR, increases EGFR protein levels and modifies EGFR degradation after ligand stimulation. Furthermore, we show that overexpression of GGA2 enhances EGFR mediated transformation while GGA2 knockdown reduces the colony and tumor forming ability of EGFR mutant LUAD. CONCLUSIONS: These data suggest that overexpression of GGA2 in LUAD tumors results in the accumulation of EGFR protein and increased EGFR signaling, which helps drive tumor progression. Thus, GGA2 plays a cooperative role with EGFR during LUAD development and is a potential therapeutic target for combination-based strategies in LUAD.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Neoplasias Pulmonares/genética , Células 3T3 , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Carcinogênese , Linhagem Celular Tumoral , Deleção Cromossômica , Receptores ErbB/genética , Receptores ErbB/metabolismo , Amplificação de Genes , Genômica , Células HEK293 , Células HeLa , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Transdução de Sinais
11.
Sci Rep ; 8(1): 16562, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30410118

RESUMO

Previous research has suggested that thyroid hormone receptor alpha 1 (THRα1), a hormone responsive splice variant, may play a role in breast cancer progression. Whether THRα1 can be exploited for anti-cancer therapy is unknown. The antiproliferative and antitumor effects of dronedarone, an FDA-approved anti-arrhythmic drug which has been shown to antagonize THRα1, was evaluated in breast cancer cell lines in vitro and in vivo. The THRα1 splice variant and the entire receptor, THRα, were also independently targeted using siRNA to determine the effect of target knockdown in vitro. In our study, dronedarone demonstrates cytotoxic effects in vitro and in vivo in breast cancer cell lines at doses and concentrations that may be clinically relevant. However, knockdown of either THRα1 or THRα did not cause substantial anti-proliferative or cytotoxic effects in vitro, nor did it alter the sensitivity to dronedarone. Thus, we conclude that dronedarone's cytotoxic effect in breast cancer cell lines are independent of THRα or THRα1 antagonism. Further, the depletion of THRα or THRα1 does not affect cell viability or proliferation. Characterizing the mechanism of dronedarone's anti-tumor action may facilitate drug repurposing or the development of new anti-cancer agents.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Dronedarona/administração & dosagem , Receptores alfa dos Hormônios Tireóideos/genética , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dronedarona/farmacologia , Reposicionamento de Medicamentos , Feminino , Humanos , Camundongos , RNA Interferente Pequeno/farmacologia , Receptores alfa dos Hormônios Tireóideos/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Proc Natl Acad Sci U S A ; 115(8): 1913-1918, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29434041

RESUMO

Polo-like kinase 4 (PLK4) is a serine/threonine kinase regulating centriole duplication. CFI-400945 is a highly selective PLK4 inhibitor that deregulates centriole duplication, causing mitotic defects and death of aneuploid cancers. Prior work was substantially extended by showing CFI-400945 causes polyploidy, growth inhibition, and apoptotic death of murine and human lung cancer cells, despite expression of mutated KRAS or p53. Analysis of DNA content by propidium iodide (PI) staining revealed cells with >4N DNA content (polyploidy) markedly increased after CFI-400945 treatment. Centrosome numbers and mitotic spindles were scored. CFI-400945 treatment produced supernumerary centrosomes and mitotic defects in lung cancer cells. In vivo antineoplastic activity of CFI-400945 was established in mice with syngeneic lung cancer xenografts. Lung tumor growth was significantly inhibited at well-tolerated dosages. Phosphohistone H3 staining of resected lung cancers following CFI-400945 treatment confirmed the presence of aberrant mitosis. PLK4 expression profiles in human lung cancers were explored using The Cancer Genome Atlas (TCGA) and RNA in situ hybridization (RNA ISH) of microarrays containing normal and malignant lung tissues. PLK4 expression was significantly higher in the malignant versus normal lung and conferred an unfavorable survival (P < 0.05). Intriguingly, cyclin dependent kinase 2 (CDK2) antagonism cooperated with PLK4 inhibition. Taken together, PLK4 inhibition alone or as part of a combination regimen is a promising way to combat lung cancer.


Assuntos
Apoptose/efeitos dos fármacos , Indazóis/farmacologia , Indóis/farmacologia , Poliploidia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Centrossomo , Regulação Neoplásica da Expressão Gênica , Humanos , Indazóis/uso terapêutico , Indóis/uso terapêutico , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo
13.
Nat Commun ; 8(1): 1126, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29066719

RESUMO

Next-generation sequencing technologies have recently been used in pharmacogenomic studies to characterize large panels of cancer cell lines at the genomic and transcriptomic levels. Among these technologies, RNA-sequencing enable profiling of alternatively spliced transcripts. Given the high frequency of mRNA splicing in cancers, linking this feature to drug response will open new avenues of research in biomarker discovery. To identify robust transcriptomic biomarkers for drug response across studies, we develop a meta-analytical framework combining the pharmacological data from two large-scale drug screening datasets. We use an independent pan-cancer pharmacogenomic dataset to test the robustness of our candidate biomarkers across multiple cancer types. We further analyze two independent breast cancer datasets and find that specific isoforms of IGF2BP2, NECTIN4, ITGB6, and KLHDC9 are significantly associated with AZD6244, lapatinib, erlotinib, and paclitaxel, respectively. Our results support isoform expressions as a rich resource for biomarkers predictive of drug response.


Assuntos
Biomarcadores/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias/tratamento farmacológico , Neoplasias/genética , Farmacogenética , Isoformas de Proteínas/genética , Processamento Alternativo , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Neoplasias da Mama/genética , Proteínas de Transporte/genética , Moléculas de Adesão Celular/genética , Química Farmacêutica , Cloridrato de Erlotinib/farmacologia , Genoma Humano , Humanos , Cadeias beta de Integrinas/genética , Lapatinib , Paclitaxel/farmacologia , Quinazolinas/farmacologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Análise de Sequência de RNA , Transcriptoma
14.
Oncotarget ; 8(31): 50489-50499, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881577

RESUMO

Recent literature suggests that most widely used ovarian cancer (OVCA) cell models do not recapitulate the molecular features of clinical tumors. To address this limitation, we generated 18 cell lines and 3 corresponding patient-derived xenografts predominantly from high-grade serous carcinoma (HGSOC) peritoneal effusions. Comprehensive genomic characterization and comparison of each model to its parental tumor demonstrated a high degree of molecular similarity. Our characterization included whole exome-sequencing and copy number profiling for cell lines, xenografts, and matched non-malignant tissues, and DNA methylation, gene expression, and spectral karyotyping for a subset of specimens. Compared to the Cancer Genome Atlas (TCGA), our models more closely resembled HGSOC than any other tumor type, justifying their validity as OVCA models. Our meticulously characterized models provide a crucial resource for the OVCA research community that will advance translational findings and ultimately lead to clinical applications.

15.
Proc Natl Acad Sci U S A ; 114(7): E1148-E1157, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137882

RESUMO

Wnt signaling, named after the secreted proteins that bind to cell surface receptors to activate the pathway, plays critical roles both in embryonic development and the maintenance of homeostasis in many adult tissues. Two particularly important cellular programs orchestrated by Wnt signaling are proliferation and stem cell self-renewal. Constitutive activation of the Wnt pathway resulting from mutation or improper modulation of pathway components contributes to cancer development in various tissues. Colon cancers frequently bear inactivating mutations of the adenomatous polyposis coli (APC) gene, whose product is an important component of the destruction complex that regulates ß-catenin levels. Stabilization and nuclear localization of ß-catenin result in the expression of a panel of Wnt target genes. We previously showed that Mule/Huwe1/Arf-BP1 (Mule) controls murine intestinal stem and progenitor cell proliferation by modulating the Wnt pathway via c-Myc. Here we extend our investigation of Mule's influence on oncogenesis by showing that Mule interacts directly with ß-catenin and targets it for degradation under conditions of hyperactive Wnt signaling. Our findings suggest that Mule uses various mechanisms to fine-tune the Wnt pathway and provides multiple safeguards against tumorigenesis.


Assuntos
Proteínas Supressoras de Tumor/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Via de Sinalização Wnt , beta Catenina/antagonistas & inibidores , Proteína da Polipose Adenomatosa do Colo/deficiência , Animais , Proteína Axina/biossíntese , Proteína Axina/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Neoplasias do Colo/metabolismo , Ciclina D1/biossíntese , Ciclina D1/genética , Regulação para Baixo , Genes APC , Genes Supressores de Tumor , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/fisiologia , Organoides/metabolismo , Organoides/ultraestrutura , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteólise , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
16.
Nat Genet ; 48(10): 1260-6, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27571262

RESUMO

Sustained expression of the estrogen receptor-α (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon estrogen stimulation to establish an oncogenic expression program. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers, suggesting that other mechanisms underlie the persistent expression of ESR1. We report significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by rs9383590, a functional inherited single-nucleotide variant (SNV) that accounts for several breast cancer risk-associated loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Mutação , Polimorfismo de Nucleotídeo Único , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo
17.
J Pathol ; 240(2): 161-72, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27357447

RESUMO

Genes involved in fetal lung development are thought to play crucial roles in the malignant transformation of adult lung cells. Consequently, the study of lung tumour biology in the context of lung development has the potential to reveal key developmentally relevant genes that play critical roles in lung cancer initiation/progression. Here, we describe for the first time a comprehensive characterization of miRNA expression in human fetal lung tissue, with subsequent identification of 37 miRNAs in non-small cell lung cancer (NSCLC) that recapitulate their fetal expression patterns. Nuclear factor I/B (NFIB), a transcription factor essential for lung development, was identified as a potential frequent target for these 'oncofetal' miRNAs. Concordantly, analysis of NFIB expression in multiple NSCLC independent cohorts revealed its recurrent underexpression (in ∼40-70% of tumours). Interrogation of NFIB copy number, methylation, and mutation status revealed that DNA level disruption of this gene is rare, and further supports the notion that oncofetal miRNAs are likely the primary mechanism responsible for NFIB underexpression in NSCLC. Reflecting its functional role in regulating lung differentiation, low expression of NFIB was significantly associated with biologically more aggressive subtypes and, ultimately, poorer survival in lung adenocarcinoma patients. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Adenocarcinoma/genética , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , Fatores de Transcrição NFI/genética , Invasividade Neoplásica/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Fatores de Transcrição NFI/metabolismo , Invasividade Neoplásica/patologia , Prognóstico , Taxa de Sobrevida
18.
Cancer Cell ; 30(2): 337-348, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27424808

RESUMO

Mutations in the isocitrate dehydrogenase-1 gene (IDH1) are common drivers of acute myeloid leukemia (AML) but their mechanism is not fully understood. It is thought that IDH1 mutants act by inhibiting TET2 to alter DNA methylation, but there are significant unexplained clinical differences between IDH1- and TET2-mutant diseases. We have discovered that mice expressing endogenous mutant IDH1 have reduced numbers of hematopoietic stem cells (HSCs), in contrast to Tet2 knockout (TET2-KO) mice. Mutant IDH1 downregulates the DNA damage (DD) sensor ATM by altering histone methylation, leading to impaired DNA repair, increased sensitivity to DD, and reduced HSC self-renewal, independent of TET2. ATM expression is also decreased in human IDH1-mutated AML. These findings may have implications for treatment of IDH-mutant leukemia.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/enzimologia , Isocitrato Desidrogenase/genética , Proteínas Proto-Oncogênicas/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Regulação para Baixo , Células-Tronco Hematopoéticas/citologia , Humanos , Isocitrato Desidrogenase/metabolismo , Camundongos , Mutação , Proteínas Proto-Oncogênicas/metabolismo
19.
Clin Epigenetics ; 8: 16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26877821

RESUMO

BACKGROUND: While localized prostate cancer (PCa) can be effectively cured, metastatic disease inevitably progresses to a lethal state called castration-resistant prostate cancer (CRPC). Emerging evidence suggests that aberrant epigenetic repression by the polycomb group (PcG) complexes fuels PCa progression, providing novel therapeutic opportunities. RESULTS: In the search for potential epigenetic drivers of CRPC, we analyzed the molecular profile of PcG members in patient-derived xenografts and clinical samples. Overall, our results identify the PcG protein and methyl-lysine reader CBX2 as a potential therapeutic target in advanced PCa. We report that CBX2 was recurrently up-regulated in metastatic CRPC and that elevated CBX2 expression was correlated with poor clinical outcome in PCa cohorts. Furthermore, CBX2 depletion abrogated cell viability and induced caspase 3-mediated apoptosis in metastatic PCa cell lines. Mechanistically explaining this phenotype, microarray analysis in CBX2-depleted cells revealed that CBX2 controls the expression of many key regulators of cell proliferation and metastasis. CONCLUSIONS: Taken together, this study provides the first evidence that CBX2 inhibition induces cancer cell death, positioning CBX2 as an attractive drug target in lethal CRPC.


Assuntos
Complexo Repressor Polycomb 1/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Apoptose , Caspase 3/metabolismo , Epigênese Genética/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Complexo Repressor Polycomb 1/fisiologia , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Células Tumorais Cultivadas , Regulação para Cima
20.
J Cancer Res Clin Oncol ; 142(4): 749-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26621152

RESUMO

PURPOSE: To identify potential biomarkers that may provide new therapeutic targets or prognostic indicators for non-small cell lung cancer (NSCLC), we investigated the three-dimensional (3D) organization of telomeres and cytoband 17q25.3 copy number in NSCLC tissues. METHODS: NSCLC paraffin-embedded tissue specimens from 18 patients were assessed for 3D telomere organization by 3D nuclear telomere imaging followed by quantitative analysis. Patients were stratified by smoking, histology, and EGFR status. Cytoband 17q25.3 was examined by fluorescent in situ hybridization. Data from comparative genomic hybridization and/or single nucleotide polymorphism arrays for cytoband 17q25.3 were obtained and correlated with Q-FISH and 3D telomere results. RESULTS: 3D telomeric profiling demonstrated that the smokers, EGFR-negative, and squamous cell carcinoma subgroups tended to have higher numbers of lower-intensity telomeres, indicative of shorter telomeres, as well as higher numbers of telomeric aggregations compared to non-smokers, EGFR-positive, and adenocarcinomas, respectively. Gains of cytoband 17q25.3 in conjunction with an increase in the control region 17p11.2 were observed in 7 of 18 (38.9 %) patients, reflecting a gain of chromosome 17. Clonal gains of cytoband 17q25.3 were observed in 11 of 18 (61 %) patients, highlighting a potential biological significance for the genes in this region in NSCLC tumourigenesis. CONCLUSIONS: The 3D telomere profiles may differentiate NSCLC patients with different histologies, EGFR, and smoking statuses, rendering them a potential biomarker for distinguishing these clinically relevant histological and molecular subtypes of lung cancer. Highly frequent clonal gain of cytoband 17q25.3 was also demonstrated, suggesting an important biological role for the genes in this region.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Cromossomos Humanos Par 17 , Variações do Número de Cópias de DNA , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Fumar/efeitos adversos , Telômero/metabolismo , Adenocarcinoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Hibridização Genômica Comparativa , Feminino , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Análise de Sobrevida , Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA