Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(9): 1466-1482, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36519761

RESUMO

Abnormal lipid homeostasis has been observed in the brain of Parkinson's disease (PD) patients and experimental models, although the mechanism underlying this phenomenon is unclear. Notably, previous studies have reported that the PD-linked protein Parkin functionally interacts with important lipid regulators, including Sterol Regulatory Element-Binding Proteins (SREBPs) and cluster of differentiation 36 (CD36). Here, we demonstrate a functional relationship between Parkin and lipoprotein lipase (LPL), a triglyceride lipase that is widely expressed in the brain. Using a human neuroblastoma cell line and a Parkin knockout mouse model, we demonstrate that Parkin expression level positively correlates with neuronal LPL protein level and activity. Importantly, our study identified SREBP2, a major regulator of sterol and fatty acid synthesis, as a potential mediator between Parkin and LPL. Supporting this, SREBP2 genetic ablation abolished Parkin effect on LPL expression. We further demonstrate that Parkin-LPL pathway regulates the formation of intracellular lipid droplets, and that this pathway is upregulated upon exposure to PD-linked oxidative stress induced by rotenone. Finally, we show that inhibition of either LPL or SREBP2 exacerbates rotenone-induced cell death. Taken together, our findings reveal a novel pathway linking Parkin, SREBP2 and LPL in neuronal lipid homeostasis that may be relevant to the pathogenesis of PD.


Assuntos
Lipase Lipoproteica , Doença de Parkinson , Proteína de Ligação a Elemento Regulador de Esterol 2 , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Homeostase , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Rotenona/efeitos adversos , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
FASEB J ; 26(9): 3680-90, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22651932

RESUMO

C5a receptors are found in the central nervous system (CNS), on both neurons and glia. However, the origin of the C5a, which activates these receptors, is unclear. In the present study, we show that primary cultured mouse cortical neurons constitutively express C5, the precursor of C5a, and express the classical receptor for C5a, CD88. With cell ischemia caused by 12 h glucose deprivation, or oxygen-glucose deprivation (OGD), neurons demonstrated increased apoptosis, up-regulation of CD88, and increased levels of C5a in the media. Exogenous murine C5a (100 nM) added to the neuronal cultures resulted in apoptosis, without affecting cell necrosis. Pretreatment of the cells with the specific CD88 receptor antagonist PMX53 (100 nM) significantly blocked ischemia-induced apoptosis (∼50%), and neurons from CD88(-/-) mice were similarly protected. In a murine model of stroke, using middle cerebral artery occlusion (MCAO), we found that C5a levels in the brain increased; this also occurred in cerebral slice cultures exposed to OGD. CD88(-/-) mice subjected to MCAO had significantly reduced infarct volumes and improved neurological scores. Taken together, our results demonstrate that neurons in the CNS have the capability to generate C5a following ischemic stress, and this has the potential to activate their C5a receptors, with deleterious consequences.


Assuntos
Apoptose , Isquemia Encefálica/patologia , Complemento C5a/biossíntese , Neurônios/metabolismo , Animais , Isquemia Encefálica/metabolismo , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/patologia , Reação em Cadeia da Polimerase , Gravidez , Receptor da Anafilatoxina C5a/genética
3.
J Neurochem ; 122(2): 321-32, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22494053

RESUMO

Intravenous immunoglobulin (IVIg) preparations obtained by fractionating blood plasma, are increasingly being used increasingly as an effective therapeutic agent in treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke and Alzheimer's disease has been proposed, but little is known about the neuroprotective mechanisms of IVIg. In this study, we investigated the effect of IVIg on downstream signaling pathways that are involved in neuronal cell death in experimental models of stroke and Alzheimer's disease. Treatment of cultured neurons with IVIg reduced simulated ischemia- and amyloid ßpeptide (Aß)-induced caspase 3 cleavage, and phosphorylation of the cell death-associated kinases p38MAPK, c-Jun NH2 -terminal kinase and p65, in vitro. Additionally, Aß-induced accumulation of the lipid peroxidation product 4-hydroxynonenal was attenuated in neurons treated with IVIg. IVIg treatment also up-regulated the anti-apoptotic protein, Bcl2 in cortical neurons under ischemia-like conditions and exposure to Aß. Treatment of mice with IVIg reduced neuronal cell loss, apoptosis and infarct size, and improved functional outcome in a model of focal ischemic stroke. Together, these results indicate that IVIg acts directly on neurons to protect them against ischemic stroke and Aß-induced neuronal apoptosis by inhibiting cell death pathways and by elevating levels of the anti-apoptotic protein Bcl2.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/toxicidade , Isquemia Encefálica/prevenção & controle , Morte Celular/efeitos dos fármacos , Imunoglobulinas Intravenosas/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/prevenção & controle , Peptídeos beta-Amiloides/farmacologia , Animais , Western Blotting , Isquemia Encefálica/patologia , Mapeamento Encefálico , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glucose/deficiência , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Infarto da Artéria Cerebral Média/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Acidente Vascular Cerebral/patologia , Resultado do Tratamento , Regulação para Cima
4.
J Cereb Blood Flow Metab ; 32(5): 835-43, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22234339

RESUMO

The development of the brain tissue damage in ischemic stroke is composed of an immediate component followed by an inflammatory response with secondary tissue damage after reperfusion. Fisetin, a flavonoid, has multiple biological effects, including neuroprotective and antiinflammatory properties. We analyzed the effects of fisetin on infarct size and the inflammatory response in a mouse model of stroke, temporary middle cerebral artery occlusion, and on the activation of immune cells, murine primary and N9 microglial and Raw264.7 macrophage cells and human macrophages, in an in vitro model of inflammatory immune cell activation by lipopolysaccharide (LPS). Fisetin not only protected brain tissue against ischemic reperfusion injury when given before ischemia but also when applied 3 hours after ischemia. Fisetin also prominently inhibited the infiltration of macrophages and dendritic cells into the ischemic hemisphere and suppressed the intracerebral immune cell activation as measured by intracellular tumor necrosis factor α (TNFα) production. Fisetin also inhibited LPS-induced TNFα production and neurotoxicity of macrophages and microglia in vitro by suppressing nuclear factor κB activation and JNK/Jun phosphorylation. Our findings strongly suggest that the fisetin-mediated inhibition of the inflammatory response after stroke is part of the mechanism through which fisetin is neuroprotective in cerebral ischemia.


Assuntos
Anti-Inflamatórios/farmacologia , Infarto Encefálico/imunologia , Células Dendríticas/imunologia , Flavonoides/farmacologia , Macrófagos/imunologia , Fármacos Neuroprotetores/farmacologia , Animais , Infarto Encefálico/metabolismo , Infarto Encefálico/patologia , Linhagem Celular , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Modelos Animais de Doenças , Flavonóis , Humanos , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/toxicidade , MAP Quinase Quinase 4/imunologia , MAP Quinase Quinase 4/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , Fosforilação/efeitos dos fármacos , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Shock ; 36(4): 424-30, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21701413

RESUMO

Intestinal ischemia-reperfusion (I/R) injury is a well-established animal model of systemic inflammation and can lead to multiple organ failure as well as severe and lasting morbidity and even death. It can occur in humans as a result of vascular surgery or as secondary sequelae to many common conditions including low blood pressure, myocardial infarction, and necrotizing enterocolitis. Systemic inflammation induced through kidney I/R injury has been shown previously to lead to encephalopathic adverse effects, and it was theorized that intestinal injury would also cause secondary central nervous system effects. This study presents evidence that over a 6-h time frame, mouse intestinal I/R injury does not cause neuronal cell death in the brain in vivo. However, at the genetic level, certain inflammatory mediators such as endothelial nitric oxide synthase, intercellular adhesion molecule 1, P selectin, TNF-α, and IL-6 are significantly upregulated. There was a significant increase in brain edema observed in sham-operated animals as well as in fasted and nonfasted I/R groups, but neurons were not apoptotic, in the 6-h time period. Conversely, Iba1-expressing activated microglia cells and glial fibrillary acidic protein-expressing astrocytes were found to be markedly increased in fasted and nonfasted I/R mice compared with controls and sham-operated animals. These data demonstrate that intestinal I/R injury induces inflammatory changes in the brain.


Assuntos
Encéfalo/imunologia , Inflamação/etiologia , Inflamação/imunologia , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/imunologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Immunoblotting , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Inflamação/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/metabolismo
6.
Mol Pharmacol ; 80(1): 23-31, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21450930

RESUMO

Notch-1 (Notch) is a cell surface receptor that regulates cell-fate decisions in the developing nervous system, and it may also have roles in synaptic plasticity in the adult brain. Binding of its ligands results in the proteolytic cleavage of Notch by the γ-secretase enzyme complex, thereby causing the release of a Notch intracellular domain (NICD) that translocates to the nucleus, in which it regulates transcription. Here we show that activation of Notch modulates ischemic neuronal cell death in vitro and in vivo. Specifically, our findings from the use of Notch-1 siRNA or the overexpression of NICD indicate that Notch activation contributes to cell death. Using modified NICD, we demonstrate an apoptosis-inducing function of NICD in both the nucleus and the cytosol. NICD transfection-induced cell death was reduced by blockade of calcium signaling, caspase activation, and Janus kinase signaling. Inhibition of the Notch-activating enzyme, γ-secretase, protected against ischemic neuronal cell death by targeting an apoptotic protease, cleaved caspase-3, nuclear factor-κB (NF-κB), and the pro-death BH3-only protein, Bcl-2-interacting mediator of cell death (Bim). Treatment of mice with a γ-secretase inhibitor, compound E, reduced infarct size and improved functional outcome in a model of focal ischemic stroke. Furthermore, γ-secretase inhibition reduced NICD, p-p65, and Bim levels in vivo. These findings suggest that Notch signaling endangers neurons after ischemic stroke by modulating the NF-κB, pro-death protein Bim, and caspase pathways.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Isquemia Encefálica/patologia , Morte Celular/fisiologia , NF-kappa B/metabolismo , Neurônios/citologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/patologia , Animais , Isquemia Encefálica/enzimologia , Isquemia Encefálica/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA