Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cancers (Basel) ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37444561

RESUMO

Uveal melanoma (UM) displays a high frequency of metastasis; however, effective therapies for metastatic UM are limited. Identifying unique metabolic features of UM may provide a potential targeting strategy. A lipid metabolism protein expression signature was induced in a normal choroidal melanocyte (NCM) line transduced with GNAQ (Q209L), a driver in UM growth and development. Consistently, UM cells expressed elevated levels of fatty acid synthase (FASN) compared to NCMs. FASN upregulation was associated with increased mammalian target of rapamycin (mTOR) activation and sterol regulatory element-binding protein 1 (SREBP1) levels. FASN and mTOR inhibitors alone significantly reduced UM cell growth. Concurrent inhibition of FASN and mTOR further reduced UM cell growth by promoting cell cycle arrest and inhibiting glucose utilization, TCA cycle metabolism, and de novo fatty acid biosynthesis. Our findings indicate that FASN is important for UM cell growth and co-inhibition of FASN and mTOR signaling may be considered for treatment of UM.

2.
Mol Cancer Res ; 20(12): 1811-1821, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044013

RESUMO

Lack of response and acquired resistance continue to be limitations of targeted and immune-based therapies. Pyroptosis is an inflammatory form of cell death characterized by the release of inflammatory damage-associated molecular patterns (DAMP) and cytokines via gasdermin (GSDM) protein pores in the plasma membrane. Induction of pyroptosis has implications for treatment strategies in both therapy-responsive, as well as resistance forms of melanoma. We show that the caspase-3 activator, raptinal, induces pyroptosis in both human and mouse melanoma cell line models and delays tumor growth in vivo. Release of DAMPs and inflammatory cytokines was dependent on caspase activity and GSDME expression. Furthermore, raptinal stimulated pyroptosis in melanoma models that have acquired resistance to BRAF and MEK inhibitor therapy. These findings add support to efforts to induce pyroptosis in both the treatment-naïve and resistant settings. IMPLICATIONS: Raptinal can rapidly induce pyroptosis in naïve and BRAFi plus MEKi-resistant melanoma, which may be beneficial for patients who have developed acquired resistance to targeted therapies.


Assuntos
Melanoma , Piroptose , Camundongos , Animais , Humanos , Piroptose/fisiologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Ciclopentanos , Citocinas
3.
Cancer Res ; 82(14): 2625-2639, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35657206

RESUMO

Melanomas frequently harbor activating NRAS mutations. However, limited advance has been made in developing targeted therapy options for patients with NRAS mutant melanoma. MEK inhibitors (MEKi) show modest efficacy in the clinic and their actions need to be optimized. In this study, we performed a genome-wide CRISPR-Cas9-based screen and demonstrated that loss of phosphoinositide-dependent kinase-1 (PDPK1) enhances the efficacy of MEKi. The synergistic effects of PDPK1 loss and MEKi was validated in NRAS mutant melanoma cell lines using pharmacologic and molecular approaches. Combined PDPK1 inhibitors (PDPK1i) with MEKi suppressed NRAS mutant xenograft growth and induced gasdermin E-associated pyroptosis. In an immune-competent allograft model, PDPK1i+MEKi increased the ratio of intratumoral CD8+ T cells, delayed tumor growth, and prolonged survival; the combination treatment was less effective against tumors in immune-deficient mice. These data suggest PDPK1i+MEKi as an efficient immunostimulatory strategy against NRAS mutant melanoma. SIGNIFICANCE: Targeting PDPK1 stimulates antitumor immunity and sensitizes NRAS mutant melanoma to MEK inhibition, providing rationale for the clinical development of a combinatorial approach for treating patients with melanoma.


Assuntos
GTP Fosfo-Hidrolases , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Melanoma , 1-Fosfatidilinositol 4-Quinase/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Linhagem Celular Tumoral , GTP Fosfo-Hidrolases/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética
4.
Nat Commun ; 13(1): 1381, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296667

RESUMO

Cellular plasticity contributes to intra-tumoral heterogeneity and phenotype switching, which enable adaptation to metastatic microenvironments and resistance to therapies. Mechanisms underlying tumor cell plasticity remain poorly understood. SOX10, a neural crest lineage transcription factor, is heterogeneously expressed in melanomas. Loss of SOX10 reduces proliferation, leads to invasive properties, including the expression of mesenchymal genes and extracellular matrix, and promotes tolerance to BRAF and/or MEK inhibitors. We identify the class of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) inhibitors as inducing cell death selectively in SOX10-deficient cells. Targeted therapy selects for SOX10 knockout cells underscoring their drug tolerant properties. Combining cIAP1/2 inhibitor with BRAF/MEK inhibitors delays the onset of acquired resistance in melanomas in vivo. These data suggest that SOX10 mediates phenotypic switching in cutaneous melanoma to produce a targeted inhibitor tolerant state that is likely a prelude to the acquisition of resistance. Furthermore, we provide a therapeutic strategy to selectively eliminate SOX10-deficient cells.


Assuntos
Melanoma , Neoplasias Cutâneas , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Microambiente Tumoral
5.
Oncogene ; 41(8): 1129-1139, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35046531

RESUMO

Effective therapeutic options are still lacking for uveal melanoma (UM) patients who develop metastasis. Metastatic traits of UM are linked to BRCA1-associated protein 1 (BAP1) mutations. Cell metabolism is re-programmed in UM with BAP1 mutant UM, but the underlying mechanisms and opportunities for therapeutic intervention remain unclear. BAP1 mutant UM tumors have an elevated glycolytic gene expression signature, with increased expression of pyruvate dehydrogenase (PDH) complex and PDH kinase (PDHK1). Furthermore, BAP1 mutant UM cells showed higher levels of phosphorylated PDHK1 and PDH that was associated with an upregulated glycolytic profile compared to BAP1 wild-type UM cells. Suppressing PDHK1-PDH phosphorylation decreased glycolytic capacity and cell growth, and induced cell cycle arrest of BAP1 mutant UM cells. Our results suggest that PDHK1-PDH phosphorylation is a causative factor of glycolytic phenotypes found in BAP1 mutant UM and propose a therapeutic opportunity for BAP1 mutant UM patients.


Assuntos
Melanoma , Neoplasias Uveais
6.
Cell Rep ; 37(10): 110085, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879275

RESUMO

Developmental factors may regulate the expression of immune modulatory proteins in cancer, linking embryonic development and cancer cell immune evasion. This is particularly relevant in melanoma because immune checkpoint inhibitors are commonly used in the clinic. SRY-box transcription factor 10 (SOX10) mediates neural crest development and is required for melanoma cell growth. In this study, we investigate immune-related targets of SOX10 and observe positive regulation of herpesvirus entry mediator (HVEM) and carcinoembryonic-antigen cell-adhesion molecule 1 (CEACAM1). Sox10 knockout reduces tumor growth in vivo, and this effect is exacerbated in immune-competent models. Modulation of CEACAM1 expression but not HVEM elicits modest effects on tumor growth. Importantly, Sox10 knockout effects on tumor growth are dependent, in part, on CD8+ T cells. Extending this analysis to samples from patients with cutaneous melanoma, we observe a negative correlation with SOX10 and immune-related pathways. These data demonstrate a role for SOX10 in regulating immune checkpoint protein expression and anti-tumor immunity in melanoma.


Assuntos
Proliferação de Células , Melanoma/metabolismo , Fatores de Transcrição SOXE/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Melanoma/genética , Melanoma/imunologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Fatores de Transcrição SOXE/genética , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Carga Tumoral
8.
Clin Cancer Res ; 27(11): 3190-3200, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33568347

RESUMO

PURPOSE: Uveal melanoma is the most common eye cancer in adults. Approximately 50% of patients with uveal melanoma develop metastatic uveal melanoma (mUM) in the liver, even after successful treatment of the primary lesions. mUM is refractory to current chemo- and immune-therapies, and most mUM patients die within a year. Uveal melanoma is characterized by gain-of-function mutations in GNAQ/GNA11, encoding Gαq proteins. We have recently shown that the Gαq-oncogenic signaling circuitry involves a noncanonical pathway distinct from the classical activation of PLCß and MEK-ERK. GNAQ promotes the activation of YAP1, a key oncogenic driver, through focal adhesion kinase (FAK), thereby identifying FAK as a druggable signaling hub downstream from GNAQ. However, targeted therapies often activate compensatory resistance mechanisms leading to cancer relapse and treatment failure. EXPERIMENTAL DESIGN: We performed a kinome-wide CRISPR-Cas9 sgRNA screen to identify synthetic lethal gene interactions that can be exploited therapeutically. Candidate adaptive resistance mechanisms were investigated by cotargeting strategies in uveal melanoma and mUM in vitro and in vivo experimental systems. RESULTS: sgRNAs targeting the PKC and MEK-ERK signaling pathways were significantly depleted after FAK inhibition, with ERK activation representing a predominant resistance mechanism. Pharmacologic inhibition of MEK and FAK showed remarkable synergistic growth-inhibitory effects in uveal melanoma cells and exerted cytotoxic effects, leading to tumor collapse in uveal melanoma xenograft and liver mUM models in vivo. CONCLUSIONS: Coupling the unique genetic landscape of uveal melanoma with the power of unbiased genetic screens, our studies reveal that FAK and MEK-ERK cotargeting may provide a new network-based precision therapeutic strategy for mUM treatment.See related commentary by Harbour, p. 2967.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Mutação com Ganho de Função , Testes Genéticos/métodos , Sistema de Sinalização das MAP Quinases/genética , Melanoma/genética , Melanoma/terapia , Terapia de Alvo Molecular , Neoplasias Uveais/genética , Neoplasias Uveais/terapia , Animais , Terapia Combinada , Feminino , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Immunol Res ; 8(9): 1114-1121, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661093

RESUMO

Concurrent MEK and CDK4/6 inhibition shows promise in clinical trials for patients with advanced-stage mutant BRAF/NRAS solid tumors. The effects of CDK4/6 inhibitor (CDK4/6i) in combination with BRAF/MEK-targeting agents on the tumor immune microenvironment are unclear, especially in melanoma, for which immune checkpoint inhibitors are effective in approximately 50% of patients. Here, we show that patients progressing on CDK4/6i/MEK pathway inhibitor combinations exhibit T-cell exclusion. We found that MEK and CDK4/6 targeting was more effective at delaying regrowth of mutant BRAF melanoma in immunocompetent versus immune-deficient mice. Although MEK inhibitor (MEKi) treatment increased tumor immunogenicity and intratumoral recruitment of CD8+ T cells, the main effect of CDK4/6i alone and in combination with MEKi was increased expression of CD137L, a T-cell costimulatory molecule on immune cells. Depletion of CD8+ T cells or blockade of the CD137 ligand-receptor interaction reduced time to regrowth of melanomas in the context of treatment with CDK4/6i plus MEKi treatment in vivo Together, our data outline an antitumor immune-based mechanism and show the efficacy of targeting both the MEK pathway and CDK4/6.


Assuntos
Acrilonitrila/análogos & derivados , Compostos de Anilina/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Acrilonitrila/farmacologia , Acrilonitrila/uso terapêutico , Compostos de Anilina/farmacologia , Animais , Humanos , Masculino , Camundongos
10.
Pharmacol Res ; 159: 104998, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32535222

RESUMO

Indoleamine 2,3-dioxygenase (IDO) is associated with the progression of many types of tumors, including melanoma. However, there is limited information about IDO modulation on tumor cell itself and the effect of BRAF inhibitor (BRAFi) treatment and resistance. Herein, IDO expression was analyzed in different stages of melanoma development and progression linked to BRAFi resistance. IDO expression was increased in primary and metastatic melanomas from patients' biopsies, especially in the immune cells infiltrate. Using a bioinformatics approach, we also identified an increase in the IDO mRNA in the vertical growth and metastatic phases of melanoma. Using in silico analyses, we found that IDO mRNA was increased in BRAFi resistance. In an in vitro model, IDO expression and activity induced by interferon-gamma (IFNγ) in sensitive melanoma cells was decreased by BRAFi treatment. However, cells that became resistant to BRAFi presented random IDO expression levels. Also, we identified that treatment with the IDO inhibitor, 1-methyltryptophan (1-MT), was able to reduce clonogenicity for parental and BRAFi-resistant cells. In conclusion, our results support the hypothesis that the decreased IDO expression in tumor cells is one of the many additional outcomes contributing to the therapeutic effects of BRAFi. Still, the IDO production changeability by the BRAFi-resistant cells reiterates the complexity of the response arising from resistance, making it not possible, at this stage, to associate IDO expression in tumor cells with resistance. On the other hand, the maintenance of 1-MT off-target effect endorses its use as an adjuvant treatment of melanoma that has become BRAFi-resistant.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Vemurafenib/farmacologia , Linhagem Celular Tumoral , Bases de Dados Genéticas , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Melanoma/enzimologia , Melanoma/genética , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/genética , Triptofano/análogos & derivados , Triptofano/farmacologia
11.
Br J Cancer ; 122(6): 789-800, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932756

RESUMO

BACKGROUND: BRAF-mutant melanoma patients respond to BRAF inhibitors and MEK inhibitors (BRAFi/MEKi), but drug-tolerant cells persist, which may seed disease progression. Adaptive activation of receptor tyrosine kinases (RTKs) has been associated with melanoma cell drug tolerance following targeted therapy. While co-targeting individual RTKs can enhance the efficacy of BRAFi/MEKi effects, it remains unclear how to broadly target multiple RTKs to achieve more durable tumour growth inhibition. METHODS: The blockage of adaptive RTK responses by the new BET inhibitor (BETi), PLX51107, was measured by RPPA and Western blot. Melanoma growth was evaluated in vitro by colony assay and EdU staining, as well as in skin reconstructs, xenografts and PDX models following BRAFi, MEKi and/or PLX51107 treatment. RESULTS: Treatment with PLX51107 limited BRAFi/MEKi upregulation of ErbB3 and PDGFR-ß expression levels. Similar effects were observed following BRD2/4 depletion. In stage III melanoma patients, expression of BRD2/4 was strongly correlated with ErbB3. PLX51107 enhanced the effects of BRAFi/MEKi on inhibiting melanoma growth in vitro, in human skin reconstructs and in xenografts in vivo. Continuous triple drug combination treatment resulted in significant weight loss in mice, but intermittent BETi combined with continuous BRAFi/MEKi treatment was tolerable and improved durable tumour inhibition outcomes. CONCLUSIONS: Together, our data suggest that intermittent inhibition of BET proteins may improve the duration of responses following BRAFi/MEKi treatment in BRAF-mutant melanoma.


Assuntos
Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Transfecção , Regulação para Cima
12.
Pigment Cell Melanoma Res ; 32(5): 687-696, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31063649

RESUMO

Epigenetic agents such as bromodomain and extra-terminal region inhibitors (BETi) slow tumor growth via tumor intrinsic alterations; however, their effects on antitumor immunity remain unclear. A recent advance is the development of next-generation BETi that are potent and display a favorable half-life. Here, we tested the BETi, PLX51107, for immune-based effects on tumor growth in BRAF V600E melanoma syngeneic models. PLX51107 delayed melanoma tumor growth and increased activated, proliferating, and functional CD8+ T cells in tumors leading to CD8+ T-cell-mediated tumor growth delay. PLX51107 decreased Cox2 expression, increased dendritic cells, and lowered PD-L1, FasL, and IDO-1 expression in the tumor microenvironment. Importantly, PLX51107 delayed the growth of tumors that progressed on anti-PD-1 therapy; a response associated with decreased Cox2 levels, decreased PD-L1 expression on non-immune cells, and increased intratumoral CD8+ T cells. Thus, next-generation BETi represent a potential first-line and secondary treatment strategy for metastatic melanoma by eliciting effects, at least in part, on antitumor CD8+ T cells.


Assuntos
Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Oxazóis/farmacologia , Proteínas/antagonistas & inibidores , Piridinas/farmacologia , Pirróis/farmacologia , Animais , Antineoplásicos/uso terapêutico , Apoptose , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Humanos , Masculino , Melanoma/imunologia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Oxazóis/uso terapêutico , Piridinas/uso terapêutico , Pirróis/uso terapêutico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cell Death Dis ; 10(4): 281, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911007

RESUMO

Metastatic cancer remains a clinical challenge; however, patients diagnosed prior to metastatic dissemination have a good prognosis. The transcription factor, TWIST1 has been implicated in enhancing the migration and invasion steps within the metastatic cascade, but the range of TWIST1-regulated targets is poorly described. In this study, we performed expression profiling to identify the TWIST1-regulated transcriptome of melanoma cells. Gene ontology pathway analysis revealed that TWIST1 and epithelial to mesenchymal transition (EMT) were inversely correlated with levels of cell adhesion molecule 1 (CADM1). Chromatin immunoprecipitation (ChIP) studies and promoter assays demonstrated that TWIST1 physically interacts with the CADM1 promoter, suggesting TWIST1 directly represses CADM1 levels. Increased expression of CADM1 resulted in significant inhibition of motility and invasiveness of melanoma cells. In addition, elevated CADM1 elicited caspase-independent cell death in non-adherent conditions. Expression array analysis suggests that CADM1 directed non-adherent cell death is associated with loss of mitochondrial membrane potential and subsequent failure of oxidative phosphorylation pathways. Importantly, tissue microarray analysis and clinical data from TCGA indicate that CADM1 expression is inversely associated with melanoma progression and positively correlated with better overall survival in patients. Together, these data suggest that CADM1 exerts tumor suppressive functions in melanoma by reducing invasive potential and may be considered a biomarker for favorable prognosis.


Assuntos
Molécula 1 de Adesão Celular/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Proteínas Nucleares/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Proteína 1 Relacionada a Twist/metabolismo , Biomarcadores Tumorais , Molécula 1 de Adesão Celular/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial/genética , Invasividade Neoplásica/genética , Proteínas Nucleares/genética , Prognóstico , Intervalo Livre de Progressão , Regiões Promotoras Genéticas , Análise Serial de Tecidos , Transfecção , Proteína 1 Relacionada a Twist/genética
15.
Exp Cell Res ; 367(2): 282-290, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29649428

RESUMO

BACKGROUND: Annexin A1 (ANXA1) and Translocator Protein-18KDa (TSPO) down-regulate neuroinflammation. We investigated the role of recombinant ANXA1 (rANXA) on TSPO functions on Toll Like Receptor (TLR) activated microglia. METHODS: BV-2 cells (murine microglia), were stimulated by E. coli Lipopolysaccharide (LPS) and treated with rANXA1 in order to measure TSPO expression and inflammatory parameters. Anti-sense ANXA1 and TLR4 and TSPO shRNA, as well as pharmacological treatments, were employed to assess the mechanisms involved. RESULTS: LPS-stimulated BV-2 cells caused overexpression of TSPO, which was inhibited by: pharmacological blockade of TLR4 or TLR4 mRNA silencing; inhibition of myeloid differentiation primary response gene 88 (MyD88) dimerization; or blocking of nuclear factor κB (NF-κB) activation. rANXA1 treatment impaired LPS-induced TSPO upregulation by down-modulating MyD88 and NF-κB signaling; the effect was abolished by WRW4, an antagonist of formyl peptide receptor 2 (FPR2). rANXA1 treatment also downregulated interleukin 1ß (IL-1ß) and tumor necrosis factor-α (TNFα) secretion in LPS-stimulated BV-2 cells. TSPO knockdown in BV-2 cells augmented LPS-induced TNFα secretion and abolished the inhibitory effect of rANXA1 on TNFα secretion evoked by LPS. CONCLUSIONS: exogenous ANXA1 down-modulates LPS-induced TSPO via MyD-88/NF-κB pathways, and constitutive TSPO is pivotal for the control of ANXA1 on TNFα secretion. TSPO actions may be involved with the mechanisms of ANXA1 on inflammatory brain diseases.


Assuntos
Anexina A1/fisiologia , Receptores de GABA/metabolismo , Animais , Anexina A1/metabolismo , Linhagem Celular , Citocinas/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Receptores de Formil Peptídeo/fisiologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Toxicol In Vitro ; 38: 67-76, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27829164

RESUMO

Carbaryl (1-naphthyl-methylcarbamate), a broad-spectrum insecticide, has recently been associated with the development of cutaneous melanoma in an epidemiological cohort study with U.S. farm workers also exposed to ultraviolet radiation, the main etiologic factor for skin carcinogenesis. We hypothesized that carbaryl exposure may increase deleterious effects of UV solar radiation on skin melanocytes. This study aimed to characterize human melanocytes after individual or combined exposure to carbaryl (100µM) and solar radiation (375mJ/cm2). In a microarray analysis, carbaryl, but not solar radiation, induced an oxidative stress response, evidenced by the upregulation of antioxidant genes, such as Hemeoxygenase-1 (HMOX1), and downregulation of Microphtalmia-associated Transcription Factor (MITF), the main regulator of melanocytic activity; results were confirmed by qRT-PCR. Carbaryl and solar radiation induced a gene response suggestive of DNA damage and cell cycle alteration. The expression of CDKN1A, BRCA1/2 and MDM2 genes was notably more intense in the combined treatment group, in a synergistic manner. Flow cytometry assays demonstrated S-phase cell cycle arrest, reduced apoptosis levels and faster induction of cyclobutane pyrimidine dimers (CPD) lesions in carbaryl treated groups. Our data suggests that carbaryl is genotoxic to human melanocytes, especially when associated with solar radiation.


Assuntos
Carbaril/toxicidade , Melanócitos/efeitos dos fármacos , Melanócitos/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Divisão Celular/efeitos dos fármacos , Divisão Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Criança , Pré-Escolar , Dano ao DNA , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos da radiação , Humanos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Luz Solar
17.
Pharmacol Res ; 111: 523-533, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27436149

RESUMO

The BRAF(V600E) mutation confers constitutive kinase activity and accounts for >90% of BRAF mutations in melanoma. This genetic alteration is a current therapeutic target; however, the antitumorigenic effects of the BRAF(V600E) inhibitor vemurafenib are short-lived and the majority of patients present tumor relapse in a short period after treatment. Characterization of vemurafenib resistance has been essential to the efficacy of next generation therapeutic strategies. Herein, we found that acute BRAF inhibition induced a decrease in active MMP-2, MT1-MMP and MMP-9, but did not modulate the metalloproteinase inhibitors TIMP-2 or RECK in naïve melanoma cells. In vemurafenib-resistant melanoma cells, we observed a lower growth rate and an increase in EGFR phosphorylation followed by the recovery of active MMP-2 expression, a mediator of cancer metastasis. Furthermore, we found a different profile of MMP inhibitor expression, characterized by TIMP-2 downregulation and RECK upregulation. In a 3D spheroid model, the invasion index of vemurafenib-resistant melanoma cells was more evident than in its non-resistant counterpart. We confirmed this pattern in a matrigel invasion assay and demonstrated that use of a matrix metalloproteinase inhibitor reduced the invasion of vemurafenib resistant melanoma cells but not drug naïve cells. Moreover, we did not observe a delimited group of cells invading the dermis in vemurafenib-resistant melanoma cells present in a reconstructed skin model. The same MMP-2 and RECK upregulation profile was found in this 3D skin model containing vemurafenib-resistant melanoma cells. Acute vemurafenib treatment induces the disorganization of collagen fibers and consequently, extracellular matrix remodeling, with this pattern observed even after the acquisition of resistance. Altogether, our data suggest that resistance to vemurafenib induces significant changes in the tumor microenvironment mainly by MMP-2 upregulation, with a corresponding increase in cell invasiveness.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Interleucina-8/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Melanoma/genética , Melanoma/metabolismo , Invasividade Neoplásica , Proteínas Proto-Oncogênicas B-raf/genética , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Regulação para Cima , Vemurafenib
18.
PLoS One ; 9(4): e96141, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788523

RESUMO

The increased incidence, high rates of mortality and few effective means of treatment of malignant melanoma, stimulate the search for new anti-tumor agents and therapeutic targets to control this deadly metastatic disease. In the present work the antitumor effect of arazyme, a natural bacterial-derived metalloprotease secreted by Serratia proteomaculans, was investigated. Arazyme significantly reduced the number of pulmonary metastatic nodules after intravenous inoculation of B16F10 melanoma cells in syngeneic mice. In vitro, the enzyme showed a dose-dependent cytostatic effect in human and murine tumor cells, and this effect was associated to the proteolytic activity of arazyme, reducing the CD44 expression at the cell surface, and also reducing in vitro adhesion and in vitro/in vivo invasion of these cells. Arazyme treatment or immunization induced the production of protease-specific IgG that cross-reacted with melanoma MMP-8. In vitro, this antibody was cytotoxic to tumor cells, an effect increased by complement. In vivo, arazyme-specific IgG inhibited melanoma lung metastasis. We suggest that the antitumor activity of arazyme in a preclinical model may be due to a direct cytostatic activity of the protease in combination with the elicited anti-protease antibody, which cross-reacts with MMP-8 produced by tumor cells. Our results show that the bacterial metalloprotease arazyme is a promising novel antitumor chemotherapeutic agent.


Assuntos
Metaloproteinase 8 da Matriz/imunologia , Melanoma Experimental/patologia , Metaloproteases/farmacologia , Metástase Neoplásica/prevenção & controle , Serratia/enzimologia , Animais , Sequência de Bases , Reações Cruzadas , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
19.
Toxicol Lett ; 227(2): 139-49, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24657526

RESUMO

The use of hair dyes is closely associated with the increase of cancer, inflammation and other skin disorders. The recognition that human skin is not an impermeable barrier indicates that there is the possibility of human systemic exposure. The carcinogenic potential of hair dye ingredients has attracted the attention of toxicologists for many decades, mainly due to the fact that some ingredients belong to the large chemical family of aromatic amines. Herein, we investigated the cytotoxicity of Basic Red 51 (BR51) in immortalized human keratinocytes (HaCaT). BR51 is a temporary hair dye that belongs to the azo group (NN); the cleavage of this bond may result in the release of toxic aromatic amines. The half maximal effective concentration (EC50) in HaCaT cells is 13µg/mL. BR51 induced a significant decrease on expression of p21 in a dose dependent manner. p53 was not affected, whereas BR51 decreased procaspase 8 and cleaved procaspase 9. These results proved that caspase 3 is fully involved in BR51-induced apoptosis. The dye was also able to stop this cell cycle on G2 in sub-toxic doses. Moreover, we reconstructed a 3D artificial epidermis using HaCaT cells; using this model, we observed that BR51 induced cell injury and cells were undergoing apoptosis, considering the fragmented nuclei. Subsequently, BR51 induced reactive oxygen species (ROS) leading to an increase on the levels of 8-oxo-dG. In conclusion, we provide strong evidence that consumer and/or professional exposure to BR51 poses risk to human health.


Assuntos
Compostos Azo/toxicidade , Tinturas para Cabelo/toxicidade , Queratinócitos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Compostos Azo/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Tinturas para Cabelo/química , Humanos , Estrutura Molecular , Necrose/induzido quimicamente
20.
Tissue Eng Part A ; 20(17-18): 2412-21, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24548268

RESUMO

Melanoma is the most aggressive form of skin cancer and until recently, it was extremely resistant to radio-, immuno-, and chemotherapy. Despite the latest success of BRAF V600E-targeted therapies, responses are typically short lived and relapse is all but certain. Furthermore, a percentage (40%) of melanoma cells is BRAF wild type. Emerging evidence suggests a role for normal host cells in the occurrence of drug resistance. In the current study, we compared a variety of cell culture models with an organotypic incomplete skin culture model (the "dermal equivalent") to investigate the role of the tissue microenvironment in the response of melanoma cells to the chemotherapeutic agent doxorubicin (Dox). In the dermal equivalent model, consisting of fibroblasts embedded in type I collagen matrix, melanoma cells showed a decreased cytotoxic response when compared with less complex culture conditions, such as seeding on plastic cell culture plate (as monolayers cultures) or on collagen gel. We further investigated the role of the microenvironment in p53 induction and caspase 3 and 9 cleavage. Melanoma cell lines cultured on dermal equivalent showed decreased expression of p53 after Dox treatment, and this outcome was accompanied by induction of interleukin IL-6, IL-8, and matrix metalloproteinases 2 and 9. Here, we show that the growth of melanoma cells in the dermal equivalent model inflects drug responses by recapitulating important pro-survival features of the tumor microenvironment. These studies indicate that the presence of stroma enhances the drug resistance of melanoma in vitro, more closely mirroring the in vivo phenotype. Our data, thus, demonstrate the utility of organotypic cell culture models in providing essential context-dependent information critical for the development of new therapeutic strategies for melanoma. We believe that the organotypic model represents an improved screening platform to investigate novel anti-cancer agents, as it provides important insights into tumor-stromal interactions, thus assisting in the elucidation of chemoresistance mechanisms.


Assuntos
Comunicação Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/fisiologia , Fibroblastos/metabolismo , Melanoma/enzimologia , Microambiente Tumoral/fisiologia , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular , Relação Dose-Resposta a Droga , Fibroblastos/patologia , Humanos , Melanoma/patologia , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA