Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(9): 5823-5833, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38174701

RESUMO

The biological significance of self-assembled protein filament networks and their unique mechanical properties have sparked interest in the development of synthetic filament networks that mimic these attributes. Building on the recent advancement of autoaccelerated ring-opening polymerization of amino acid N-carboxyanhydrides (NCAs), this study strategically explores a series of random copolymers comprising multiple amino acids, aiming to elucidate the core principles governing gelation pathways of these purpose-designed copolypeptides. Utilizing glutamate (Glu) as the primary component of copolypeptides, two targeted pathways were pursued: first, achieving a fast fibrillation rate with lower interaction potential using serine (Ser) as a comonomer, facilitating the creation of homogeneous fibril networks; and second, creating more rigid networks of fibril clusters by incorporating alanine (Ala) and valine (Val) as comonomers. The selection of amino acids played a pivotal role in steering both the morphology of fibril superstructures and their assembly kinetics, subsequently determining their potential to form sample-spanning networks. Importantly, the viscoelastic properties of the resulting supramolecular hydrogels can be tailored according to the specific copolypeptide composition through modulations in filament densities and lengths. The findings enhance our understanding of directed self-assembly in high molecular weight synthetic copolypeptides, offering valuable insights for the development of synthetic fibrous networks and biomimetic supramolecular materials with custom-designed properties.


Assuntos
Hidrogéis , Peptídeos , Hidrogéis/química , Peptídeos/química , Aminoácidos , Ácido Glutâmico/química , Alanina/química
2.
Nanoscale ; 9(10): 3530-3536, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28244518

RESUMO

Doped graphene platforms have been attracting considerable attention due to their improved electrochemical performances. Recent studies have shown the advantage of using either p-type or n-type doped graphene materials as transducers for the detection of various electroactive probes. Here we wanted to take a step forward and extend the study to investigate the ability of heteroatom doped graphene as an electrochemical platform for biorecognition. To this aim, a boron-doped graphene, a nitrogen-doped graphene and an undoped graphene material prepared under similar conditions were employed for the detection of fumonisin B1, a highly carcinogenic mycotoxin found in food commodities. We found that the material structural features, such as the amount of oxygen functionalities, had a stronger influence on the sensitivity of biorecognition rather than the kind and amount of dopant. Our findings may be essential for the choice of a proper platform for the assessment of food safety.


Assuntos
Boro , Grafite/química , Nitrogênio , Oxigênio , Técnicas Biossensoriais , Técnicas Eletroquímicas , Fumonisinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA