Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(13): eadj9600, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536932

RESUMO

Recently identified human FOXP3lowCD45RA- inflammatory non-suppressive (INS) cells produce proinflammatory cytokines, exhibit reduced suppressiveness, and promote antitumor immunity unlike conventional regulatory T cells (Tregs). In spite of their implication in tumors, the mechanism for generation of FOXP3lowCD45RA- INS cells in vivo is unclear. We showed that the FOXP3lowCD45RA- cells in human tumors demonstrate attenuated expression of CRIF1, a vital mitochondrial regulator. Mice with CRIF1 deficiency in Tregs bore Foxp3lowINS-Tregs with mitochondrial dysfunction and metabolic reprograming. The enhanced glutaminolysis activated α-ketoglutarate-mTORC1 axis, which promoted proinflammatory cytokine expression by inducing EOMES and SATB1 expression. Moreover, chromatin openness of the regulatory regions of the Ifng and Il4 genes was increased, which facilitated EOMES/SATB1 binding. The increased α-ketoglutarate-derived 2-hydroxyglutarate down-regulated Foxp3 expression by methylating the Foxp3 gene regulatory regions. Furthermore, CRIF1 deficiency-induced Foxp3lowINS-Tregs suppressed tumor growth in an IFN-γ-dependent manner. Thus, CRIF1 deficiency-mediated mitochondrial dysfunction results in the induction of Foxp3lowINS-Tregs including FOXP3lowCD45RA- cells that promote antitumor immunity.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Doenças Mitocondriais , Neoplasias , Humanos , Camundongos , Animais , Linfócitos T Reguladores , Ácidos Cetoglutáricos/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Citocinas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
2.
Apoptosis ; 27(11-12): 946-960, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36028785

RESUMO

Developing individualized therapies for different renal cell carcinoma patients is pivotal for improving the efficacy of immunotherapy. It has been reported that ferroptosis is involved in T cell-mediated anti-tumor immunity, and that therapeutic approaches targeting tumor ferroptosis pathway in combination with immune checkpoint blockade drugs improve the efficacy of cancer immunotherapy. This study focused specifically on ferroptosis genes to identify novel biomarkers that reflect prognosis in different renal cell carcinoma subtypes. LASSO algorithm and multivariate Cox regression were initiated for identifying ferroptosis-related multigene risk signature (FRGsig) and established a FRGsig score model. We used multiple tumor microenvironment gene signatures and methods to infer tumor microenvironment status and immune cell invasion levels. Our study found that high FRGsig score was associated with poor prognosis in patients with predominant histologic subtypes of renal cell carcinoma. And high FRGsig score samples had higher levels of anti-tumor immunity cells infiltration, and there was a feedback mechanism whereby anti-tumor inflammation promoted the recruitment or differentiation of immunosuppressive cells. FRGsig was a potential biomarker for predicting the response to immune checkpoint blockade therapy in kidney clear cell carcinoma and kidney papillary cell carcinoma, and the kidney papillary cell carcinoma patients with high FRGsig was associated with better response to anti-VEGF therapy. Our findings provided further insights into assessing immunotherapy sensitivity of predominant histologic subtypes of renal cell carcinoma. FRGsig might be a potential biomarker for predicting the efficacy of angiogenic blocking drugs or immune checkpoint inhibitors in different renal cell carcinoma subtypes, enabling more precise patient selection.


Assuntos
Carcinoma de Células Renais , Ferroptose , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Ferroptose/genética , Inibidores de Checkpoint Imunológico , Apoptose , Imunoterapia , Microambiente Tumoral/genética , Neoplasias Renais/genética , Neoplasias Renais/terapia
3.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580931

RESUMO

BACKGROUND: Mitochondria are involved in cancer energy metabolism, although the mechanisms underlying the involvement of mitoribosomal dysfunction in hepatocellular carcinoma (HCC) remain poorly understood. Here, we investigated the effects of mitoribosomal impairment-mediated alterations on the immunometabolic characteristics of liver cancer. METHODS: We used a mouse model of HCC, liver tissues from patients with HCC, and datasets from The Cancer Genome Atlas (TCGA) to elucidate the relationship between mitoribosomal proteins (MRPs) and HCC. In a mouse model, we selectively disrupted expression of the mitochondrial ribosomal protein CR6-interacting factor 1 (CRIF1) in hepatocytes to determine the impact of hepatocyte-specific impairment of mitoribosomal function on liver cancer progression. The metabolism and immunophenotype of liver cancer was assessed by glucose flux assays and flow cytometry, respectively. RESULTS: Single-cell RNA-seq analysis of tumor tissue and TCGA HCC transcriptome analysis identified mitochondrial defects associated with high-MRP expression and poor survival outcomes. In the mouse model, hepatocyte-specific disruption of the mitochondrial ribosomal protein CRIF1 revealed the impact of mitoribosomal dysfunction on liver cancer progression. Crif1 deficiency promoted programmed cell death protein 1 expression by immune cells in the hepatic tumor microenvironment. A [U-13C6]-glucose tracer demonstrated enhanced glucose entry into the tricarboxylic acid cycle and lactate production in mice with mitoribosomal defects during cancer progression. Mice with hepatic mitoribosomal defects also exhibited enhanced progression of liver cancer accompanied by highly exhausted tumor-infiltrating T cells. Crif1 deficiency induced an environment unfavorable to T cells, leading to exhaustion of T cells via elevation of reactive oxygen species and lactate production. CONCLUSIONS: Hepatic mitoribosomal defects promote glucose partitioning toward glycolytic flux and lactate synthesis, leading to T cell exhaustion and cancer progression. Overall, the results suggest a distinct role for mitoribosomes in regulating the immunometabolic microenvironment during HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/genética , Glucose , Humanos , Lactatos , Neoplasias Hepáticas/patologia , Camundongos , Proteínas Mitocondriais , Proteínas Ribossômicas/genética , Linfócitos T/metabolismo , Microambiente Tumoral
4.
J Cachexia Sarcopenia Muscle ; 13(3): 1785-1799, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306755

RESUMO

BACKGROUND: Mitochondrial oxidative phosphorylation (OxPhos) is a critical regulator of skeletal muscle mass and function. Although muscle atrophy due to mitochondrial dysfunction is closely associated with bone loss, the biological characteristics of the relationship between muscle and bone remain obscure. We showed that muscle atrophy caused by skeletal muscle-specific CR6-interacting factor 1 knockout (MKO) modulates the bone marrow (BM) inflammatory response, leading to low bone mass. METHODS: MKO mice with lower muscle OxPhos were fed a normal chow or high-fat diet and then evaluated for muscle mass and function, and bone mineral density. Immunophenotyping of BM immune cells was also performed. BM transcriptomic analysis was used to identify key factors regulating bone mass in MKO mice. To determine the effects of BM-derived CXCL12 (C-X-C motif chemokine ligand 12) on regulation of bone homeostasis, a variety of BM niche-resident cells were treated with recombinant CXCL12. Vastus lateralis muscle and BM immune cell samples from 14 patients with hip fracture were investigated to examine the association between muscle function and BM inflammation. RESULTS: MKO mice exhibited significant reductions in both muscle mass and expression of OxPhos subunits but increased transcription of mitochondrial stress response-related genes in the extensor digitorum longus (P < 0.01). MKO mice showed a decline in grip strength and a higher drop rate in the wire hanging test (P < 0.01). Micro-computed tomography and von Kossa staining revealed that MKO mice developed a low mass phenotype in cortical and trabecular bone (P < 0.01). Transcriptomic analysis of the BM revealed that mitochondrial stress responses in skeletal muscles induce an inflammatory response and adipogenesis in the BM and that the CXCL12-CXCR4 (C-X-C chemokine receptor 4) axis is important for T-cell homing to the BM. Antagonism of CXCR4 attenuated BM inflammation and increased bone mass in MKO mice. In humans, patients with low body mass index (BMI = 17.2 ± 0.42 kg/m2 ) harboured a larger population of proinflammatory and cytotoxic senescent T-cells in the BMI (P < 0.05) and showed reduced expression of OxPhos subunits in the vastus lateralis, compared with controls with a normal BMI (23.7 ± 0.88 kg/m2 ) (P < 0.01). CONCLUSIONS: Defects in muscle mitochondrial OxPhos promote BM inflammation in mice, leading to decreased bone mass. Muscle mitochondrial dysfunction is linked to BM inflammatory cytokine secretion via the CXCL12-CXCR4 signalling axis, which is critical for inducing low bone mass.


Assuntos
Medula Óssea , Músculo Esquelético , Animais , Medula Óssea/patologia , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Microtomografia por Raio-X
5.
J Cachexia Sarcopenia Muscle ; 13(1): 355-367, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34970859

RESUMO

BACKGROUND: Thyroid hormone excess induces protein energy wasting, which in turn promotes muscle weakness and bone loss in patients with Graves' disease. Although most studies have confirmed a relationship between thyrotoxicosis and muscle dysfunction, few have measured changes in plasma metabolites and immune cells during the development and recovery from thyrotoxic myopathy. The aim of this study was to identify specific plasma metabolites and T-cell subsets that predict thyrotoxic myopathy recovery in patients with Graves' disease. METHODS: One hundred patients (mean age, 40.0 ± 14.2 years; 67.0% female), with newly diagnosed or relapsed Graves' disease were enrolled at the start of methimazole treatment. Handgrip strength and Five Times Sit to Stand Test performance time were measured at Weeks 0, 12, and 24. In an additional 35 patients (mean age, 38.9 ± 13.5 years; 65.7% female), plasma metabolites and immunophenotypes of peripheral blood were evaluated at Weeks 0 and 12, and the results of a short physical performance battery assessment were recorded at the same time. RESULTS: In both patient groups, methimazole-induced euthyroidism was associated with improved handgrip strength and lower limb muscle function at 12 weeks. Elevated plasma metabolites including acylcarnitines were restored to normal levels at Week 12 regardless of gender, body mass index, or age (P trend <0.01). Senescent CD8+ CD28- CD57+ T-cell levels in peripheral blood were positively correlated with acylcarnitine levels (P < 0.05) and decreased during thyrotoxicosis recovery (P < 0.05). High levels of senescent CD8+ T cells at Week 0 were significantly associated with small increases in handgrip strength after 12 weeks of methimazole treatment (P < 0.05), but not statistically associated with Five Times Sit to Stand Test performance. CONCLUSIONS: Restoring euthyroidism in Graves' disease patients was associated with improved skeletal muscle function and performance, while thyroid hormone-associated changes in plasma acylcarnitines levels correlated with muscle dysfunction recovery. T-cell senescence-related systemic inflammation correlated with plasma acylcarnitine levels and was also associated with small increases in handgrip strength.


Assuntos
Doença de Graves , Doenças Musculares , Adulto , Linfócitos T CD8-Positivos , Feminino , Doença de Graves/complicações , Doença de Graves/tratamento farmacológico , Força da Mão , Humanos , Masculino , Metimazol/uso terapêutico , Pessoa de Meia-Idade , Doenças Musculares/diagnóstico , Doenças Musculares/etiologia
6.
Cells ; 10(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34440674

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. HCC progression and metastasis are closely related to altered mitochondrial metabolism, including mitochondrial stress responses, metabolic reprogramming, and mitoribosomal defects. Mitochondrial oxidative phosphorylation (OXPHOS) defects and reactive oxygen species (ROS) production are attributed to mitochondrial dysfunction. In response to oxidative stress caused by increased ROS production, misfolded or unfolded proteins can accumulate in the mitochondrial matrix, leading to initiation of the mitochondrial unfolded protein response (UPRmt). The mitokines FGF21 and GDF15 are upregulated during UPRmt and their levels are positively correlated with liver cancer development, progression, and metastasis. In addition, mitoribosome biogenesis is important for the regulation of mitochondrial respiration, cell viability, and differentiation. Mitoribosomal defects cause OXPHOS impairment, mitochondrial dysfunction, and increased production of ROS, which are associated with HCC progression in mouse models and human HCC patients. In this paper, we focus on the role of mitochondrial metabolic signatures in the development and progression of HCC. Furthermore, we provide a comprehensive review of cell autonomous and cell non-autonomous mitochondrial stress responses during HCC progression and metastasis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Metabolismo Energético , Neoplasias Hepáticas/metabolismo , Metaboloma , Mitocôndrias Hepáticas/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Progressão da Doença , Humanos , Neoplasias Hepáticas/patologia , Mitocôndrias Hepáticas/patologia , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/patologia , Proteostase , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas
7.
J Biomed Mater Res A ; 108(3): 784-794, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31794132

RESUMO

Treating critical-sized bone defects is an important issue in the field of tissue engineering and bone regeneration. From the various biomaterials for bone regeneration, collagen is an important and widely used biomaterial in biomedical applications, hence, it has numerous attractive properties including biocompatibility, hyper elastic behavior, prominent mechanical properties, support cell adhesion, proliferation, and biodegradability. In the present study, collagen was extracted from duck's feet (DC) as a new collagen source and combined with quercetin (Qtn), a type of flavonoids found in apple and onions and has been reported to affect the bone metabolism, for increasing osteogenic differentiation. Further, improving osteoconductive properties of the scaffold hydroxyapatite (HAp) a biodegradable material was used. We prepared 0, 25, 50, and 100 µM Qtn/DC/HAp sponges using Qtn, DC, and HAp. Their physiochemical characteristics were evaluated using scanning electron microscopy, compressive strength, porosity, and Fourier transform infrared spectroscopy. To assess the effect of Qtn on osteogenic differentiation, we cultured bone marrow mesenchymal stem cells on the sponges and evaluated by alkaline phosphatase, 3-4-2, 5-diphenyl tetrazolium bromide assay, and real-time polymerase chain reaction. Additionally, they were studied implanting in rat, analyzed through Micro-CT and histological staining. From our in vitro and in vivo results, we found that Qtn has an effect on bone regeneration. Among the different experimental groups, 25 µM Qtn/DC/HAp sponge was found to be highly increased in cell proliferation and osteogenic differentiation compared with other groups. Therefore, 25 µM Qtn/DC/HAp sponge can be used as an alternative biomaterial for bone regeneration in critical situations.


Assuntos
Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Colágeno/farmacologia , Durapatita/farmacologia , Transplante de Células-Tronco Mesenquimais , Alicerces Teciduais , Animais , Materiais Biocompatíveis/química , Células Cultivadas , Colágeno/química , Patos , Durapatita/química , Feminino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Quercetina/química , Coelhos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
Mater Sci Eng C Mater Biol Appl ; 97: 347-355, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678920

RESUMO

Tissue engineered scaffolds, made of natural derived materials, have the potential to be used in bone regeneration fields due to the biocompatible and biodegradable features. In this study, we propose duck's feet-derived collagen (DC) sponges blended with hydroxyapatite (HAp), incorporated with different concentrations of silymarin (Smn), for improved bone regeneration. The morphological and structural properties of DC/HAp and DC/HAp loaded with 25, 50 and 100 µM of Smn sponges were analyzed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). In vitro evaluations were carried out on rabbit bone marrow stem cells (rBMSCs) using MTT assay for cell proliferation, ALP assay for osteogenic differentiation and reverse transcription-polymerase chain reaction (RT-PCR) for expression of mRNAs. For the evaluation of new bone formation in vivo, histological analysis and micro computed tomography (µCT) were used. Preliminary results, on Smn/DC/HAp morphology and mechanical properties, showed an interconnected porosity suitable for cells ingrowth and a higher compressive strength with the presence of Smn. Similarly, the cells proliferation and ALP activity modulation were positively influenced by the Smn content. Especially, the 100 µM Smn/DC/HAp sponge efficiently enhances the rBMSCs adhesion, growth and gene expression of osteogenic markers. The enhanced osteoinductive effects of sponges blended with Smn were confirmed using µ-CT and histological evaluations. In conclusion, results suggest that collagen sponges represent an excellent environment for cells growth and proliferation, while Smn plays an important role to improve materials osteogenic properties.


Assuntos
Regeneração Óssea/fisiologia , Colágeno/química , Silimarina/farmacologia , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Células da Medula Óssea/citologia , Regeneração Óssea/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Patos , Durapatita/química , Feminino , , Microscopia Eletrônica de Varredura , Osteogênese/genética , Coelhos , Ratos Sprague-Dawley , Silimarina/química , Espectroscopia de Infravermelho com Transformada de Fourier
9.
J Biomater Sci Polym Ed ; 29(7-9): 984-996, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29207926

RESUMO

Scaffolds mimicking structural and chemical characteristics of the native bone tissues are critical for bone tissue engineering. Herein, we have developed and characterized epigallocatechin gallate/duck's feet collagen/hydroxyapatite (EGCG/DC/HAp) composite sponges that enhanced the bone tissue regeneration. The three-dimensional composite sponges were synthesized by loading various amounts (i.e. 1, 5 and 10 µM) of EGCG to duck feet derived collagen followed by freeze-drying and then coating with hydroxyapatite. Several measuremental techniques were employed to examine the properties of the as-fabricated composite sponges including morphology and structure, porosity, compressive strength, etc. and as well compared with pristine duck feet derived collagen. SEM observations of EGCG/DC/HAp sponges showed the formation of a highly porous collagen matrix with EGCG embodiment. The porosity and pore size of sponges were found to increase by high EGCG content. The compressive strength was calculated as 3.54 ± 0.04, 3.63 ± 0.03, 3.89 ± 0.05, 4.047 ± 0.05 MPa for 1, 5 and 10 µM EGCG/DC/HAp sponges, respectively. Osteoblast-like cell (BMSCs isolated from rabbit) culture and in vivo experiments with EGCG/DC/HAp sponges implanted in nude mouse followed by histological staining showed enhanced cell internalization and attachment, cell proliferation, alkaline phosphatase expressions, indicating that EGCG/DC/HAp sponges have ahigh biocompatibility. Moreover, highEGCG content in the EGCG/DC/HAp sponges have led to increased cellular behavior. Collectively, the 5 µM of EGCG/DC/HAp sponges were suggested as the potential candidates for bone tissue regeneration.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Osso e Ossos/efeitos dos fármacos , Catequina/análogos & derivados , Patos , Durapatita/química , Regeneração/efeitos dos fármacos , Animais , Osso e Ossos/citologia , Osso e Ossos/fisiologia , Catequina/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Coelhos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA