Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 26(21): 4790-4797, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32011778

RESUMO

Supercapacitors have attracted tremendous research interest, since they are expected to achieve battery-level energy density, while having a long calendar life and short charging time. Herein, a novel asymmetric supercapacitor has been successfully assembled from NiCo2 S4 nanosheets and spinous Fe2 O3 nanowire modified hollow melamine foam decorated with polypyrrole as positive and negative electrodes, respectively. Owing to the well-designed nanostructure and suitable matching of electrode materials, the assembled asymmetric supercapacitor (ASC) exhibits an extended operation voltage window of 1.6 V with an energy density of 20.1 Wh kg-1 at a power density of 159.4 kW kg-1 . Moreover, the ASC shows stable cycling stability, with 81.3 % retention after 4000 cycles and a low internal resistance of 1.03 Ω. Additionally, a 2.5 V light-emitting diode indicator can be lit up by three ASCs connected in series; this provides evidence of the practical application potential of the assembled energy-storage system. The excellent electrochemical performances should be credited to the significant enhancement of the specific surface area, charge transport, and mechanical stability resulting from the unique 3D morphology.

2.
J Colloid Interface Sci ; 557: 617-627, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557582

RESUMO

Compressible and flexible supercapacitors have aroused enormous interest of many scientific researchers for potential applications in wearable electronic products. However, the design and construction of the electrode with superior mechanical as well as electrical properties still face a lot of challenges. In present work, melamine foam/polypyrrole (MF/PPy) electrode with high deformation-tolerance and excellent electrochemical performance is prepared by in-situ interfacial polymerization of polypyrrole on commercial melamine foam, where PPy nanoparticles with size of 700 nm are uniformly anchored on the MF skeletons. The electrochemical characterizations show that the electrode exhibits excellent specific area capacitance of 2.685 F cm-2 at 2 mA cm-2 and good cyclic stability with more than 80% of capacitance remained after 3000 cycles. Furthermore, a symmetrical aqueous supercapacitor is assembled and exhibits an excellent energy density up to 75.95 µWh cm-2 at the power density of 5.82 mW cm-2 and excellent cycling stability as the current density increases by 10 times. Even under a high strain of 70%, about 95.76% of the initial capacitance is retained after 500 consecutive compressions. These outstanding performances enable the MF/PPy composite a promising candidate for potential applications in compressible and flexible electrochemical energy storage devices.

3.
J Colloid Interface Sci ; 539: 342-350, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30594009

RESUMO

HYPOTHESIS: Aqueous lubricants exhibit versatile advantages over oil-based lubricants. However, it still remains a challenge for the aqueous solutions to obtain excellent lubrication properties with high contact pressure on macroscale. EXPERIMENTS: In this work, a comb-typed poly(oligo(ethylene glycol) methylether acrylate) (P(OEGMA)) was successfully synthesized via RAFT polymerization. Rheological, morphological and tribological properties of prepared P(OEGMA) aqueous solutions were characterized via a rheometer, cryo-SEM and ball-on-disk tribometer, respectively. FINDINGS: The synthesized P(OEGMA) exhibited a uniformly smaller size than that of the commercial linear polyethylene glycol (PEG), leading to reduced viscosities in aqueous solutions. The obtained P(OEGMA) aqueous solutions achieved outstandingly ultralow friction coefficients (µâ€¯< 0.01) and a good wear-resistance under high pressure (>300 MPa, two-fold increase than reported in the previous literature). The desirable lubricating performances can be attributed to the well-established running-in period, a good interfacial adsorption property between polymer molecules and solid surfaces, the hydration effect as well as the hydrodynamic effect. The current finding reveals the excellent aqueous lubrication properties possessed by the synthesized comb-typed P(OEGMA), which can broaden the development of aqueous lubricants in practical engineering fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA