Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2405325, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083268

RESUMO

Renal tubular epithelial cells (TECs) undergo an energy-related metabolic shift from fatty acid oxidation to glycolysis during chronic kidney disease (CKD) progression. However, the mechanisms underlying this burst of glycolysis remain unclear. Herein, a new critical glycolysis regulator, the transcription factor forkhead box protein K1 (FOXK1) that is expressed in TECs during renal fibrosis and exhibits fibrogenic and metabolism-rewiring capacities is reported. Genetic modification of the Foxk1 locus in TECs alters glycolytic metabolism and fibrotic lesions. A surge in the expression of a set of glycolysis-related genes following FOXK1 protein activation contributes to the energy-related metabolic shift. Nuclear-translocated FOXK1 forms condensate through liquid-liquid phase separation (LLPS) to drive the transcription of target genes. Core intrinsically disordered regions within FOXK1 protein are mapped and validated. A therapeutic strategy is explored by targeting the Foxk1 locus in a murine model of CKD by the renal subcapsular injection of a recombinant adeno-associated virus 9 vector encoding Foxk1-short hairpin RNA. In summary, the mechanism of a FOXK1-mediated glycolytic burst in TECs, which involves the LLPS to enhance FOXK1 transcriptional activity is elucidated.

2.
Exp Cell Res ; 395(1): 112188, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32707136

RESUMO

Esophageal squamous cell carcinoma (ESCC) has high aggressiveness and poor prognosis, and is the major histological subtype of esophageal cancer in East Asia and East Africa. In this study, we found that USP46, a deubiquitinating enzyme, is overexpressed in clinical ESCC samples, especially in patients with positive lymph node metastasis. Moreover, USP46 enhances the migration and invasion of ESCC cells by mediating the EMT process in vitro, and promotes lymph nodes and lung metastasis of ESCC in vivo. In addition, we found that USP46 is a bona fide deubiquitinating enzyme to stabilize the protein level of ENO1 through deubiquitination. ENO1 protein level was also positively correlated with USP46 in the ESCC samples. In summary, these findings reveal the functional role of USP46 as a deubiquitinating enzyme on ESCC metastasis, providing us a potential therapeutic target for the treatment of ESCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/patologia , Proteínas de Ligação a DNA/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Metástase Neoplásica/patologia , Fosfopiruvato Hidratase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/genética , Neoplasias Esofágicas/patologia , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Invasividade Neoplásica/patologia , Proteases Específicas de Ubiquitina/genética
3.
Theranostics ; 10(13): 5687-5703, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483412

RESUMO

Rationale: Chemokines contribute to cancer metastasis and have long been regarded as attractive therapeutic targets for cancer. However, controversy exists about whether neutralizing chemokines by antibodies promotes or inhibits tumor metastasis, suggesting that the approach to directly target chemokines needs to be scrutinized. Methods: Transwell assay, mouse metastasis experiments and survival analysis were performed to determine the functional role of S100A14 in breast cancer. RNA-Seq, secreted proteomics, ChIP, Western blot, ELISA, transwell assay and neutralizing antibody experiments were employed to investigate the underlying mechanism of S100A14 in breast cancer metastasis. Immunohistochemistry and ELISA were performed to examine the expression and serum levels of S100A14, CCL2 and CXCL5, respectively. Results: Overexpression of S100A14 significantly enhanced migration, invasion and metastasis of breast cancer cells. In contrast, knockout of S100A14 exhibited the opposite effects. Mechanistic studies demonstrated that S100A14 promotes breast cancer metastasis by upregulating the expression and secretion of CCL2 and CXCL5 via NF-κB mediated transcription. The clinical sample analyses showed that S100A14 expression is strongly associated with CCL2/CXCL5 expression and high expression of these three proteins is correlated with worse clinical outcomes. Notably, the serum levels of S100A14, CCL2/CXCL5 have significant diagnostic value for discerning breast cancer patients from healthy individuals. Conclusions: S100A14 is significantly upregulated in breast cancer, it can promote breast cancer metastasis by increasing the expression and secretion of CCL2/CXCL5 via RAGE-NF-κB pathway. And S100A14 has the potential to serve as a serological marker for diagnosis of breast cancer. Collectively, we identify S100A14 as an upstream regulator of CCL2/CXCL5 signaling and a metastatic driver of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CXCL5/metabolismo , Animais , Biomarcadores Tumorais/sangue , Proteínas de Ligação ao Cálcio/genética , Movimento Celular/genética , Proliferação de Células/genética , Quimiocina CCL2/genética , Quimiocina CXCL5/genética , China , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA