Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Nat Cancer ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609488

RESUMO

Tumor-specific T cells are crucial in anti-tumor immunity and act as targets for cancer immunotherapies. However, these cells are numerically scarce and functionally exhausted in the tumor microenvironment (TME), leading to inefficacious immunotherapies in most patients with cancer. By contrast, emerging evidence suggested that tumor-irrelevant bystander T (TBYS) cells are abundant and preserve functional memory properties in the TME. To leverage TBYS cells in the TME to eliminate tumor cells, we engineered oncolytic virus (OV) encoding TBYS epitopes (OV-BYTE) to redirect the antigen specificity of tumor cells to pre-existing TBYS cells, leading to effective tumor inhibition in multiple preclinical models. Mechanistically, OV-BYTE induced epitope spreading of tumor antigens to elicit more diverse tumor-specific T cell responses. Remarkably, the OV-BYTE strategy targeting human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory efficiently inhibited tumor progression in a human tumor cell-derived xenograft model, providing important insights into the improvement of cancer immunotherapies in a large population with a history of SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) vaccination.

2.
J Thorac Oncol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38553005

RESUMO

INTRODUCTION: EGFR-mutated NSCLC is characterized by an immunosuppressive microenvironment that confers limited clinical effectiveness to anti-PD-1 or PD-L1 antibodies. Despite the discouraging outcomes of immunotherapy, novel immune checkpoints are constantly emerging, among which the specific vulnerability for therapeutic intervention in the context of EGFR-mutated NSCLC remains unresolved. METHODS: Data sets of patient- and cell line-levels were used for screening and mutual validation of association between EGFR mutation and a panel of immune checkpoint-related genes. Regulatory mechanism was elucidated through in vitro manipulation of EGFR signaling pathway and evaluated by immunoblot analysis, quantitative polymerase chain reaction, flow cytometry, immunofluorescence staining, and chromatin immunoprecipitation. In vivo investigation of different therapeutic strategies were conducted using both immunocompetent and immunodeficient mouse models. RESULTS: Among all screened immune checkpoints, CD47 emerged as the candidate most relevant to EGFR activation. Mechanistically, EGFR mutation constitutively activated downstream ERK and AKT pathways to respectively up-regulate the transcriptional factors c-Myc and NF-κB, both of which structurally bound to the promotor region of CD47 and actively transcribed this "don't eat me" signal. Impaired macrophage phagocytosis was observed on introduction of EGFR-sensitizing mutations in NSCLC cell line models, whereas CD47 blockade restored the phagocytic capacity and augmented tumor cell killing in both in vitro and in vivo models. Remarkably, the combination of anti-CD47 antibody with EGFR tyrosine kinase inhibitor revealed an additive antitumor activity compared with monotherapy of either antitumor agent in both immunocompetent and adaptive immunity-deficient mouse models. CONCLUSIONS: EGFR-sensitizing mutation facilitates NSCLC's escape from innate immune attack through up-regulating CD47. Combination therapy incorporating CD47 blockade holds substantial promise for clinical translation in developing more effective therapeutic approaches against EGFR-mutant NSCLC.

3.
Technol Cancer Res Treat ; 23: 15330338231219369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38378004

RESUMO

Objective: To compare the risk of death, tumor recurrence, metastasis, and disease progression in early-stage non-small cell lung cancer (NSCLC) patients treated with thoracoscopic surgery and stereotactic body radiotherapy (SBRT). Methods: Patients who underwent radical surgery and SBRT for NSCLC between April 2010 and November 2021 were retrospectively analyzed. Continuous and categorical variables were compared using the Mann-Whitney U and Chi-square test, respectively. Kaplan-Meier curves were used to evaluate the survival outcomes of each patient group. Cox proportional hazard regression analyses were performed to estimate the risk of death, tumor recurrence, metastasis, and disease progression. Results: A total of 167 patients were enrolled, of whom 75 and 92 underwent SBRT and surgery, respectively. The median follow-up was 45 months (range, 4-105 months). SBRT patients were observed to be significantly older (median, 76.0 vs 67.0 years; P < .001), and associated with significantly higher mortality rate (42.7% vs 26.1%, P = .024). However, no significant difference in overall survival duration was seen between the SBRT and surgery groups (45.0 vs 41.0 months; P = .199). SBRT patients demonstrated significantly lower rates of metastasis (12.0% vs 30.4%, P = .004), and significantly longer metastasis-free survival (39.0 months vs 35.5 months, P = .020). The remaining outcomes, including tumor recurrence and disease progression rates, were similar between the groups. Compared to surgery, SBRT did not significantly associate with death, recurrence, or disease progression. Kaplan-Meier curves showed significant differences in overall, tumor recurrence-free, and disease progression-free survival between the groups (log-rank P < .05). Conclusions: SBRT demonstrated similar overall survival compared to radical surgery, and associated with significantly reduced risk of tumor metastasis. Our study thereby suggests SBRT as the best treatment option for patients with inoperable NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Radiocirurgia/efeitos adversos , Recidiva Local de Neoplasia/patologia , Estudos Retrospectivos , Estimativa de Kaplan-Meier , Carcinoma de Pequenas Células do Pulmão/patologia , Resultado do Tratamento , Toracoscopia , Progressão da Doença , Estadiamento de Neoplasias
4.
SSM Popul Health ; 25: 101605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38292049

RESUMO

Objective: This research aims to construct and authenticate a comprehensive predictive model for all-cause mortality, based on a multifaceted array of risk factors. Methods: The derivation cohort for this study was the Chinese Longitudinal Healthy Longevity Survey (CLHLS), while the Healthy Ageing and Biomarkers Cohort Study (HABCS) and the China Health and Retirement Longitudinal Study (CHARLS) were used as validation cohorts. Risk factors were filtered using lasso regression, and predictive factors were determined using net reclassification improvement. Cox proportional hazards models were employed to establish the mortality risk prediction equations, and the model's fit was evaluated using a discrimination concordance index (C-index). To evaluate the internal consistency of discrimination and calibration, a 10x10 cross-validation technique was employed. Calibration plots were generated to compare predicted probabilities with observed probabilities. The prediction ability of the equations was demonstrated using nomogram. Results: The CLHLS (mean age 88.08, n = 37074) recorded 28158 deaths (179683 person-years) throughout the course of an 8-20 year follow-up period. Additionally, there were 1384 deaths in the HABCS (mean age 86.74, n = 2552), and 1221 deaths in the CHARLS (mean age 72.48, n = 4794). The final all-cause mortality model incorporated demographic characteristics like age, sex, and current marital status, as well as functional status indicators including cognitive function and activities of daily living. Additionally, lifestyle factors like past smoking condition and leisure activities including housework, television viewing or radio listening, and gardening work were included. The C-index for the derivation cohort was 0.728 (95% CI: 0.724-0.732), while the external validation results for the CHARS and HABCS cohorts were 0.761 (95% CI: 0.749-0.773) and 0.713 (95% CI: 0.697-0.729), respectively. Conclusion: This study introduces a reliable, validated, and acceptable mortality risk predictor for older adults in China. These predictive factors have potential applications in public health policy and clinical practice.

5.
Pharmgenomics Pers Med ; 16: 959-972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023824

RESUMO

Background: Dysregulation of lipid metabolism is common in cancer. However, the molecular mechanism underlying lipid metabolism in esophageal squamous cell carcinoma (ESCC) and its effect on patient prognosis are not well understood. The objective of our study was to construct a lipid metabolism-related prognostic model to improve prognosis prediction in ESCC. Methods: We downloaded the mRNA expression profiles and corresponding survival data of patients with ESCC from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. We performed differential expression analysis to identify differentially expressed lipid metabolism-related genes (DELMGs). We used Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses to establish a risk model in the GEO cohort and used data of patients with ESCC from the TCGA cohort for validation. We also explored the relationship between the risk model and the immune microenvironment via infiltrated immune cells and immune checkpoints. Results: The result showed that 132 unique DELMGs distinguished patients with ESCC from the controls. We identified four genes (ACAA1, ACOT11, B4GALNT1, and DDHD1) as prognostic gene expression signatures to construct a risk model. Patients were classified into high- and low-risk groups as per the signature-based risk score. We used the receiver operating characteristic (ROC) curve and the Kaplan-Meier (KM) survival analysis to validate the predictive performance of the 4-gene signature in both the training and validation sets. Infiltrated immune cells and immune checkpoints indicated a difference in the immune status between the two risk groups. Conclusion: The results of our study indicated that a prognostic model based on the 4-gene signature related to lipid metabolism was useful for the prediction of prognosis in patients with ESCC.

6.
Vaccine ; 41(34): 4986-4995, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37400286

RESUMO

The COVID-19 vaccinations are crucial in protecting against the global pandemic. However, accumulating studies revealed the severely blunted COVID-19 vaccine effectiveness in cancer patients. The PD-1/PD-L1 immune checkpoint blockade (ICB) therapy leads to durable therapeutic responses in a subset of cancer patients and has been approved to treat a wide spectrum of cancers in the clinic. In this regard, it is pivotal to explore the potential impact of PD-1/PD-L1 ICB therapy on COVID-19 vaccine effectiveness during ongoing malignancy. In this study, using preclinical models, we found that the tumor-suppressed COVID-19 vaccine responses are largely reverted in the setting of PD-1/PD-L1 ICB therapy. We also identified that the PD-1/PD-L1 blockade-directed restoration of COVID-19 vaccine effectiveness is irrelevant to anti-tumor therapeutic outcomes. Mechanistically, the restored COVID-19 vaccine effectiveness is entwined with the PD-1/PD-L1 blockade-driven preponderance of follicular helper T cell and germinal center responses during ongoing malignancy. Thus, our findings indicate that PD-1/PD-L1 blockade will greatly normalize the responses of cancer patients to COVID-19 vaccination, while regardless of its anti-tumor efficacies on these patients.


Assuntos
COVID-19 , Neoplasias , Humanos , Vacinas contra COVID-19 , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , COVID-19/prevenção & controle , Neoplasias/terapia , Imunoterapia
7.
Abdom Radiol (NY) ; 48(10): 3091-3100, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428205

RESUMO

PURPOSE: To investigate the dynamic contrast-enhanced computed tomography (CECT) features and clinical characteristics of sarcomatoid hepatocellular carcinoma (S-HCC). METHODS: We retrospectively reviewed the CECT data and clinical findings of 13 patients (11 male and 2 female, with an average age of 58.6 ± 11.2 years) with pathologically proven S-HCC, including 9 patients with surgical resection and 4 patients with biopsy examination. All patients underwent CECT scans. Two radiologists reviewed and evaluated general features, CECT features and extratumoral features of each lesions based on a consensus. RESULTS: Among the thirteen tumors, a mean size of 66.7 mm was observed, ranging in diameter from 30 to 146 mm. Seven of thirteen patients had hepatitis B virus (HBV) infection and an elevation of alpha-fetoprotein (AFP) level. Most of cases located in the right lobe of liver (84.6%, 11/13). Nine of thirteen tumors showed lobulated or wavy contours and infiltrative morphology, while eight tumors presented with unclear margin. The tumor textures were mainly heterogeneous for ischemia or necrosis, with solid components dominantly in all cases. Eight of thirteen tumors exhibited "slow-in and and slow-out" dynamic enhancement pattern in CECT, with a enhancement peak in the portal venous phase. Portal vein or hepatic thrombus, adjacent organs invasion and lymph node metastasis were observed in two patients, respectively. Four of thirteen lesions occurred intrahepatic metastasis and hepatic surface retraction respectively. CONCLUSION: S-HCC gengerally seen in elderly male with HBV infection and elevated AFP level. The CT manifestations including: large diameter, frequently hepatic right lobe involvement, lobular or wavy contours, ill-defined margins, infiltrative morphology, obvious heterogeneity and dynamic enhancement pattern of "slow-in and and slow-out" , contributed to the diagnosis of S-HCC. These tumors usually occurred hepatic surface retraction and intrahepatic metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , alfa-Fetoproteínas , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
8.
MedComm (2020) ; 4(3): e265, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37229486

RESUMO

Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.

9.
BMJ Case Rep ; 16(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055079

RESUMO

Rectosigmoid intussusception is a rare cause of bowel obstruction, accounting for only approximately 1%-2% of all bowel obstruction cases. While intussusception in adults typically occurs intra-abdominally and presents with signs and symptoms of intestinal obstruction, in rare cases, it can mimic a rectal prolapse if the intussusceptum protrudes through the anal canal. We herein report a case where an octogenarian woman presented with rectosigmoid intussusception through the anal canal, due to a sigmoid colon submucosal lipoma, who eventually required an open Hartmann's procedure. Patients with rectal prolapse symptoms should be carefully examined to rule out intussuscepting masses as a differential, as it would necessitate earlier surgical intervention.


Assuntos
Neoplasias do Colo , Obstrução Intestinal , Intussuscepção , Lipoma , Prolapso Retal , Adulto , Feminino , Idoso de 80 Anos ou mais , Humanos , Prolapso Retal/diagnóstico , Prolapso Retal/etiologia , Prolapso Retal/cirurgia , Intussuscepção/diagnóstico por imagem , Intussuscepção/etiologia , Reto , Neoplasias do Colo/diagnóstico , Obstrução Intestinal/complicações , Lipoma/diagnóstico , Lipoma/diagnóstico por imagem
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122201, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36463622

RESUMO

Hypoxia is closely linked to various diseases, including solid tumors. The level of nitroreductase (NTR) is usually abnormally upregulated in hypoxic conditions, which can be a biomarker of hypoxia. Herein, the first endoplasmic reticulum-targeting NIR fluorescent probe, ISO-NTR, was developed for highly selective and sensitive detection of NTR. It shows a large Stokes shift (185 nm) and a 5-fold increases in fluorescence intensity. Meanwhile, the ISO-NTR probe with a dicyanoisophorone derivative has excellent endoplasmic reticulum targeting in living systems with high Pearson's correlation coefficients (Rr = 0.9489). Molecular docking calculations and high binding energy between the probe and NTR (-10.78 kcal·mol-1) may explain the high selectivity of ISO-NTR. Additionally, it has been successfully applied to NTR imaging in vitro and vivo due to its good sensitivity, high selectivity and large Stokes shift, which may provide an effective method for studying the physiological and pathological functions of NTR in living systems. This probe could be developed as a potential imaging tool to further explore the pathogenesis of hypoxia-related diseases in endoplasmic reticulum stress.


Assuntos
Corantes Fluorescentes , Hipóxia , Humanos , Corantes Fluorescentes/química , Simulação de Acoplamento Molecular , Microscopia de Fluorescência , Imagem Óptica/métodos , Nitrorredutases/metabolismo
11.
Polymers (Basel) ; 16(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38201710

RESUMO

A 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-based derivative (PN-DOPO) combined with aluminium phosphates-coated sepiolite (Sep@AlPO4) was used to improve the flame retardance, thermal stability and mechanical performances of poly (ethylene oxide) (PEO)/poly (butylene adipate-co-terephthalate) (PBAT) blends. The synergistic effects of PN-DOPO and Sep@AlPO4 on flame-retarded PEO/PBAT composites were systematically discussed. Results indicated that introducing 5 wt% Sep@AlPO4 with 10 wt% PN-DOPO into PEO/PBAT achieved a V-1 rating for the UL-94 test and increased the limiting oxygen index value to 23.7%. Moreover, the peak heat release rate (p-HRR), average HRR and total heat release values of PEO/PBAT/PN10%/Sep5% composites decreased by 35.6%, 11.0% and 23.0% compared with those of PEO/PBAT, respectively. Thermogravimetric analysis (TGA) results confirmed that PN-DOPO/Sep@AlPO4 enhanced the initial thermal stability and char yield of PEO/PBAT matrix, and TGA/Fourier transform infrared spectrometry results revealed that the composites exhibited the characteristic absorption peaks of phosphorous-containing groups and an increase in gas-phase volatiles during thermal degradation. The morphological structures of the residues indicated that PN-DOPO and Sep@AlPO4 mixtures produced a more dense and continuous char layer on the composite surface during burning. Rheological behaviour revealed that higher complex viscosity and modulus values of PEO/PBAT/PN-DOPO/Sep@AlPO4 sample could also promote the crosslinking network structure of condensed phases during combustion. Furthermore, the PEO/PBAT/PN-DOPO/Sep@AlPO4 composites exhibited superior elongation at break and flexural performance than the PEO/PBAT system. All results demonstrated that the PEO/PBAT system modified with PN-DOPO/Sep@AlPO4 showed remarkable flame retardance, and improved thermal stability and mechanical properties, indicating its potential application in areas requiring fire safety.

12.
Cell ; 185(22): 4049-4066.e25, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36208623

RESUMO

Blocking PD-1/PD-L1 signaling transforms cancer therapy and is assumed to unleash exhausted tumor-reactive CD8+ T cells in the tumor microenvironment (TME). However, recent studies have also indicated that the systemic tumor-reactive CD8+ T cells may respond to PD-1/PD-L1 immunotherapy. These discrepancies highlight the importance of further defining tumor-specific CD8+ T cell responders to PD-1/PD-L1 blockade. Here, using multiple preclinical tumor models, we revealed that a subset of tumor-specific CD8+ cells in the tumor draining lymph nodes (TdLNs) was not functionally exhausted but exhibited canonical memory characteristics. TdLN-derived tumor-specific memory (TTSM) cells established memory-associated epigenetic program early during tumorigenesis. More importantly, TdLN-TTSM cells exhibited superior anti-tumor therapeutic efficacy after adoptive transfer and were characterized as bona fide responders to PD-1/PD-L1 blockade. These findings highlight that TdLN-TTSM cells could be harnessed to potentiate anti-tumor immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Microambiente Tumoral , Neoplasias/terapia , Neoplasias/patologia , Linfonodos/patologia
13.
Arch Biochem Biophys ; 731: 109449, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36288761

RESUMO

Persistent infection of human papillomavirus (HPV) and immune escape are the main causes of cervical cancer. E6/E7 encoded by HPV16 may be closely related to carcinogenesis. HPV infection may upregulate PD-L1 expression, resulting in immune escape and cervical cancerigenesis. Evidence indicates that miRNAs may mediate the regulation of E6/E7 on PD-L1. Therefore, we aimed to screen the miRNA, and further verify its expression and functions. Bioinformatics approaches were used to screen the miRNAs that mediate the regulation of E6/E7 on PD-L1. The expression of the miRNA and PD-L1 in HPV+ and HPV- cervical cancer cells were compared, and the effect of E6E7 on them was evaluated. Then, the effect of the miRNA on PD-L1 was assessed by the Gain- and Loss-of-function test. Finally, in vivo experiments were conducted to verify the effects of the miRNA on tumor growth and survival of tumor-bearing mice. Six miRNAs were screened, of which miR-142-5p was identified. MiR-142-5p was downregulated and PD-L1 was upregulated in HPV- cells after transfection of E6, E7, or E6/E7. The rescue test showed that the upregulation of miR-142-5p attenuated the effect of E6/E7 on PD-L1. The reverse relationship between PD-L1 and miR-142-5p was confirmed. In vivo experiments suggest that miR-142-5p upregulation inhibits the growth of the transplanted tumors by targeting PD-L1. MiR-142-5p acts as a tumor suppressor in cervical cancer. HPV16 E6E7 may promote the immune escape of cervical cancer cells by regulating the miR-142-5p/PD-L1 axis. Using miR-142-5p in tumor immunotherapy as a new strategy is proposed.


Assuntos
MicroRNAs , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , MicroRNAs/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
14.
Signal Transduct Target Ther ; 7(1): 358, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209270

RESUMO

Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.


Assuntos
Neoplasias Gástricas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Receptores ErbB/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Proteína Supressora de Tumor p53
15.
Nanomaterials (Basel) ; 12(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36079933

RESUMO

Polymer blending has been widely used to fabricate polymeric films in the last decade due to its superior properties to a single component. In this study, an aluminum phosphate-coated halloysite nanotube (HNTs@AlPO4) was fabricated using a one-pot heterogeneous precipitation method, organically modified HNTs@AlPO4 (o-HNTs@AlPO4) was used to improve the performance of polyethylene oxide/poly(butylene adipate-co-terephthalate) (PEO/PBAT) blends, and the mechanical and rheological properties of the PEO/PBAT/o-HNTs@AlPO4 films were systematically discussed. According to our results, there is an optimal addition for adequate AlPO4 nanoparticle dispersion and coating on the surface of HNTs, and organic modification could improve the interfacial compatibility of HNTs@AlPO4 and the polymeric matrix. Moreover, o-HNTs@AlPO4 may serve as a compatibilizer between PEO and PBAT, and PEO/PBAT/o-HNTs@AlPO4 films have better mechanical and rheological properties than the PEO/PBAT blends without the o-HNTs@AlPO4 component.

16.
Analyst ; 147(18): 4098-4104, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35946518

RESUMO

In this work, the first endoplasmic reticulum-targeted near-infrared fluorescent probe, ISO-Chy, with a dicyanoisophorone derivative as a fluorophore is reported by introducing the recognition group of 4-bromobutyl for chymotrypsin detection. The probe can be easily synthesized and has shown satisfactory sensitivity and selectivity to chymotrypsin. Meanwhile, ISO-Chy has a large Stokes shift (135 nm) to minimize self-absorption and interference from autofluorescence and then generate significant fluorescence enhancement upon incubation with chymotrypsin. Additionally, ISO-Chy has an excellent ability to target the endoplasmic reticulum, along with preferable Pearson's correlation coefficients (Rr) of 0.9411 and 0.9522 in P815 cells and HepG2 cells, respectively. Moreover, ISO-Chy was successfully utilized to visualize endogenous chymotrypsin in P815 cells and HepG2 cells and was first used to detect chymotrypsin activity in HepG2 tumor-bearing mice. These findings indicate that ISO-Chy could be an effective tool for detecting endogenous chymotrypsin activity, supporting its use for investigating chymotrypsin function in pathologic processes.


Assuntos
Quimotripsina , Corantes Fluorescentes , Animais , Quimotripsina/análise , Retículo Endoplasmático , Células Hep G2 , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Imagem Óptica
17.
Front Pharmacol ; 13: 881042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979232

RESUMO

Excessive solar ultraviolet (SUV) radiation often causes dermatitis, photoaging, and even skin cancer. In the pathological processes of SUV-induced sunburn, JNK is activated by phosphorylation, and it in turn phosphorylates its downstream transcription factors, such as ATF2 and c-jun. The transcription factors further regulate the expression of pro-inflammatory genes, such as IL-6 and TNF-α, which ultimately leads to dermatitis. Therefore, inhibiting JNK may be a strategy to prevent dermatitis. In this study, we screened for worenine as a potential drug candidate for inhibiting sunburn. We determined that worenine inhibited the JNK-ATF2/c-jun signaling pathway and the secretion of IL-6 and TNF-α in cell culture and in vivo, confirming the role of worenine in inhibiting sunburn. Furthermore, we determined that worenine bound and inhibited JNK2 activity in vitro through the MST, kinase, and in vitro kinase assays. Therefore, worenine might be a promising drug candidate for the prevention and treatment of SUV-induced sunburn.

18.
Polymers (Basel) ; 14(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35745948

RESUMO

Polypropylene (PP), as a general thermoplastic polymer, is broadly used in different fields. However, the high flammability, melt dripping and poor mechanical properties of PP are a constraint to the expansion of its applications. In this paper, PP composites containing a combination of a phenethyl-bridged DOPO derivative (PN-DOPO) and organic montmorillonite (OMMT) were prepared via melt blending. The synergistic effects of PN-DOPO and OMMT on the flame retardancy, thermal stability and mechanical properties of PP composites were investigated systematically. The results showed that 20 wt% addition of PN-DOPO with OMMT improved the flame retardancy of PP composites. In particular, the introduction of 17 wt% PN-DOPO and 3 wt% OMMT increased the LOI values of the PP matrix from 17.2% to 23.6%, and the sample reached the V-0 level and reduced the heat release rate and total heat release. TGA indicated that OMMT could improve the thermal stability of the PP/PN-DOPO blends and promote the char residues of PP systems. Rheological behaviour showed a higher storage modulus, loss modulus and complex viscosity of PP/PN-DOPO/OMMT composites, suggesting a more effective network structure. In addition, the tensile strength, flexural properties and impact strength of the PP/PN-DOPO/OMMT composites actually increased for a good dispersion effect. Combined with the char layer analysis, the introduction of OMMT promoted more continuous and compact structural layers containing an aluminium-silicon barrier and phosphorus-containing carbonaceous char in the condensed phase. OMMT can improve the flame retardancy, thermal stability and mechanical properties of PP, and, thus, PN-DOPO/OMMT blends can serve as an efficient synergistic system for flame-retarded PP composites.

19.
Food Funct ; 13(8): 4734-4747, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35388381

RESUMO

This study aimed to prepare fish oil microcapsules by freeze-drying an emulsion co-stabilized by rice bran protein fibrils (RBPFs) and xanthan gum (XG) to improve the oxidation stability and controlled release effect. Emulsions stabilized either solely by RBPFs or unfibrillated rice bran protein (RBP) or by a combination of RBP and XG were also fabricated as microcapsule templates for comparison. The rheological properties, particle size, and zeta potential of the emulsions were examined. In addition, the characteristics of the fish oil microcapsules such as surface oil content, encapsulation efficiency, water activity, moisture content, morphological structure, oxidation stability, and digestive performance were also assessed. The rheological properties revealed that the addition of XG increased the storage modulus of the emulsion and reduced the loss modulus and apparent viscosity. At shear rates of 0-100 s-1, the fish oil emulsion did not exhibit any gel properties or shear thinning. Fibrillation increased the particle size of the fish oil emulsion, whereas adding XG reduced the droplet size. The combination of RBP fibrillation and XG addition provided the highest encapsulation efficiency for fish oil. Fibrillation reduced the water activity and moisture content of the fish oil microcapsules. The anisotropy of the fibrils and the high viscosity of XG produced a layer of wrapping on the continuous heterogeneous surface of the freeze-dried powder particles. RBPF/XG microcapsules stored at 45 °C for 1 month had the lowest peroxide value and thiobarbituric acid value, the lowest surface oil content, and the lightest yellowness. These results suggest that the combination of RBPFs and XG provides better encapsulation and protective effects for fish oil microcapsules. Upon simulated digestion, the microcapsules containing XG and RBPFs exhibited a more favorable controlled release of free fatty acids. These findings indicate that microcapsules formed from emulsions co-stabilized by XG and RBPFs are suitable for encapsulating fish oil in functional foods.


Assuntos
Óleos de Peixe , Oryza , Cápsulas , Preparações de Ação Retardada , Emulsões/química , Polissacarídeos Bacterianos , Água/química
20.
MedComm (2020) ; 3(1): e111, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35281793

RESUMO

Exhausted CD8+ T (Tex) cells are caused by persistent antigenic stimulation during chronic viral infection or tumorigenesis. Tex cells upregulate and sustain the expressions of multiple immune inhibitory receptors (IRs). Blocking IRs of Tex cells, exemplified by PD-1, can partially restore their effector functions and thus lead to viral suppression or tumor remission. Tex cells derived from chronic viral infections share the expression spectrum of IRs with Tex cells derived from tumors; however, whether any IRs are selectively expressed by tumor-derived Tex cells or virus-derived Tex cells remains to be learnt. In the study, we found that Tex cells upregulate IR natural killer cell lectin-like receptor isoform A (NKG2A) specifically in the context of tumor but not chronic viral infection. Moreover, the NKG2A expression is attributed to tumor antigen recognition and thus bias expressed by tumor-specific Tex cells in the tumor microenvironment instead of their counterparts in the periphery. Such dichotomous NKG2A expression further dictates the differential responsiveness of Tex cells to NKG2A immune checkpoint blockade. Therefore, our study highlighted NKG2A as a disease-dependent IR and provided novel insights into the distinct regulatory mechanisms underlying T cell exhaustion between tumor and chronic viral infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA