Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39475482

RESUMO

Proteolytic targeting chimera (PROTAC) represent an advanced strategy for targeting undruggable proteins, and the molecular warheads targeting E3 ligases play a crucial role. Recently, we explored an alkenyl oxindole warhead targeting the E3 ligase DCAF11 and sought to validate its potential. In this study, we synthesized a range of BRD4 PROTACs (8a-8o, 14a-14f, 22a-22m) with modified alkenyl oxindole warheads and developed a high-throughput screening system based on high-content imaging. We identified L134 (22a) as a potent BRD4 degrader, achieving BRD4 degradation (Dmax > 98%, DC50 = 7.36 nM) and demonstrating antitumor activity. Mechanically, BRD4 degradation by L134 was mediated through the ubiquitin-proteasome system in a DCAF11-dependent manner. Therefore, this study provides a rapid screening method for effective PROTACs and highlights the PROTAC L134 based on alkenyl oxindole-DCAF11 pair as a promising candidate for treating BRD4-driven cancers.

2.
J Mol Cell Biol ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313331

RESUMO

Ferroptosis is a non-apoptotic mode of cell death characterized by iron-dependent accumulation of lipid peroxidation. While lipid radical elimination reaction catalyzed by glutathione peroxidase 4 (GPX4) is a major anti-ferroptosis mechanism, inhibiting this pathway pharmaceutically shows promise as an anti-tumor strategy. However, certain tumor cells exhibit redundancy in lipid radical elimination pathways, rendering them unresponsive to GPX4 inhibitors. In this study, we conducted screens across different cancer cell lines and FDA-approved drugs, leading to the identification of temsirolimus in combination with the GPX4 inhibitor RSL3 as a potent inducer of ferroptosis in liver cancer cells. Mechanistically, temsirolimus sensitized liver cancer cells to ferroptosis by directly binding to and inhibiting ferroptosis suppressor protein 1 (FSP1) enzyme. Notably, while temsirolimus is recognized as a potent mTOR inhibitor, its ferroptosis-inducing effect is primarily attributed to its inhibition of FSP1 rather than mTOR activity. By performing in vitro colony formation assays and in vivo tumor xenograft models, we demonstrated that the combination of temsirolimus and RSL3 effectively suppressed liver tumor progression. This tumoricidal effect was associated with increased lipid peroxidation and induction of ferroptosis. In conclusion, our findings underscore the potential of combining multi-target ferroptosis-inducing agents to circumvent resistance to ferroptosis in liver cancer cells and highlight temsirolimus as a promising FSP1 inhibitor and ferroptosis inducer, which also deserves further investigation in translational medicine.

3.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891890

RESUMO

Glioblastoma (GBM) is the most common malignant brain tumor in adults. Despite advancements in treatment, the prognosis for patients with GBM remains poor due to its aggressive nature and resistance to therapy. CRISPR-based genetic screening has emerged as a powerful tool for identifying genes crucial for tumor progression and treatment resistance, offering promising targets for tumor therapy. In this review, we provide an overview of the recent advancements in CRISPR-based genetic screening approaches and their applications in GBM. We highlight how these approaches have been used to uncover the genetic determinants of GBM progression and responsiveness to various therapies. Furthermore, we discuss the ongoing challenges and future directions of CRISPR-based screening methods in advancing GBM research.


Assuntos
Neoplasias Encefálicas , Sistemas CRISPR-Cas , Testes Genéticos , Glioblastoma , Glioblastoma/genética , Glioblastoma/diagnóstico , Glioblastoma/terapia , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico , Testes Genéticos/métodos , Edição de Genes/métodos , Animais
4.
PLoS Biol ; 22(5): e3002550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768083

RESUMO

Alkenyl oxindoles have been characterized as autophagosome-tethering compounds (ATTECs), which can target mutant huntingtin protein (mHTT) for lysosomal degradation. In order to expand the application of alkenyl oxindoles for targeted protein degradation, we designed and synthesized a series of heterobifunctional compounds by conjugating different alkenyl oxindoles with bromodomain-containing protein 4 (BRD4) inhibitor JQ1. Through structure-activity relationship study, we successfully developed JQ1-alkenyl oxindole conjugates that potently degrade BRD4. Unexpectedly, we found that these molecules degrade BRD4 through the ubiquitin-proteasome system, rather than the autophagy-lysosomal pathway. Using pooled CRISPR interference (CRISPRi) screening, we revealed that JQ1-alkenyl oxindole conjugates recruit the E3 ubiquitin ligase complex CRL4DCAF11 for substrate degradation. Furthermore, we validated the most potent heterobifunctional molecule HL435 as a promising drug-like lead compound to exert antitumor activity both in vitro and in a mouse xenograft tumor model. Our research provides new employable proteolysis targeting chimera (PROTAC) moieties for targeted protein degradation, providing new possibilities for drug discovery.


Assuntos
Proteínas de Ciclo Celular , Oxindóis , Proteólise , Ubiquitina-Proteína Ligases , Humanos , Animais , Proteólise/efeitos dos fármacos , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Oxindóis/farmacologia , Oxindóis/metabolismo , Oxindóis/química , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Células HEK293 , Relação Estrutura-Atividade , Complexo de Endopeptidases do Proteassoma/metabolismo , Azepinas/farmacologia , Azepinas/química , Azepinas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Feminino , Proteínas que Contêm Bromodomínio , Receptores de Interleucina-17
5.
J Exp Clin Cancer Res ; 43(1): 95, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561797

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. Current treatment options are limited and often ineffective. CAR T cell therapy has shown success in treating hematologic malignancies, and there is growing interest in its potential application in solid tumors, including GBM. However, current CAR T therapy lacks clinical efficacy against GBM due to tumor-related resistance mechanisms and CAR T cell deficiencies. Therefore, there is a need to improve CAR T cell therapy efficacy in GBM. METHODS: We conducted large-scale CRISPR interference (CRISPRi) screens in GBM cell line U87 MG cells co-cultured with B7-H3 targeting CAR T cells to identify genetic modifiers that can enhance CAR T cell-mediated tumor killing. Flow cytometry-based tumor killing assay and CAR T cell activation assay were performed to validate screening hits. Bioinformatic analyses on bulk and single-cell RNA sequencing data and the TCGA database were employed to elucidate the mechanism underlying enhanced CAR T efficacy upon knocking down the selected screening hits in U87 MG cells. RESULTS: We established B7-H3 as a targetable antigen for CAR T therapy in GBM. Through large-scale CRISPRi screening, we discovered genetic modifiers in GBM cells, including ARPC4, PI4KA, ATP6V1A, UBA1, and NDUFV1, that regulated the efficacy of CAR T cell-mediated tumor killing. Furthermore, we discovered that TNFSF15 was upregulated in both ARPC4 and NDUFV1 knockdown GBM cells and revealed an immunostimulatory role of TNFSF15 in modulating tumor-CAR T interaction to enhance CAR T cell efficacy. CONCLUSIONS: Our study highlights the power of CRISPR-based genetic screening in investigating tumor-CAR T interaction and identifies potential druggable targets in tumor cells that confer resistance to CAR T cell killing. Furthermore, we devised targeted strategies that synergize with CAR T therapy against GBM. These findings shed light on the development of novel combinatorial strategies for effective immunotherapy of GBM and other solid tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Receptores de Antígenos Quiméricos , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Imunoterapia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral
6.
STAR Protoc ; 4(3): 102346, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421615

RESUMO

In glioma modeling, existing organoid protocols lack the ability to replicate glioma cell invasion and interaction with normal brain tissue. Here, we present a protocol for generating in vitro brain disease models using human-induced pluripotent- or embryonic-stem-cell-derived cerebral organoids (COs). We describe steps for forming glioma organoids by co-culturing forebrain organoids with U-87 MG cells. We also detail vibratome sectioning of COs to prevent cell death and enhance contact between U-87 MG cells and cerebral tissues.


Assuntos
Glioma , Células-Tronco Pluripotentes Induzidas , Humanos , Organoides , Prosencéfalo , Glioma/metabolismo
7.
bioRxiv ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37398301

RESUMO

CRISPR-based genetic screening directly in mammalian tissues in vivo is challenging due to the need for scalable, cell-type selective delivery and recovery of guide RNA libraries. We developed an in vivo adeno-associated virus-based and Cre recombinase-dependent workflow for cell type-selective CRISPR interference screening in mouse tissues. We demonstrate the power of this approach by identifying neuron-essential genes in the mouse brain using a library targeting over 2000 genes.

8.
Nat Cell Biol ; 24(1): 24-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35027731

RESUMO

SARS-CoV-2 infection of human cells is initiated by the binding of the viral Spike protein to its cell-surface receptor ACE2. We conducted a targeted CRISPRi screen to uncover druggable pathways controlling Spike protein binding to human cells. Here we show that the protein BRD2 is required for ACE2 transcription in human lung epithelial cells and cardiomyocytes, and BRD2 inhibitors currently evaluated in clinical trials potently block endogenous ACE2 expression and SARS-CoV-2 infection of human cells, including those of human nasal epithelia. Moreover, pharmacological BRD2 inhibition with the drug ABBV-744 inhibited SARS-CoV-2 replication in Syrian hamsters. We also found that BRD2 controls transcription of several other genes induced upon SARS-CoV-2 infection, including the interferon response, which in turn regulates the antiviral response. Together, our results pinpoint BRD2 as a potent and essential regulator of the host response to SARS-CoV-2 infection and highlight the potential of BRD2 as a therapeutic target for COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Células Epiteliais/virologia , SARS-CoV-2/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , COVID-19/metabolismo , COVID-19/virologia , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Fatores de Transcrição/metabolismo , Tratamento Farmacológico da COVID-19
9.
PLoS Genet ; 16(10): e1009103, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33052901

RESUMO

G protein-coupled receptors (GPCRs) allow cells to respond to chemical and sensory stimuli through generation of second messengers, such as cyclic AMP (cAMP), which in turn mediate a myriad of processes, including cell survival, proliferation, and differentiation. In order to gain deeper insights into the complex biology and physiology of these key cellular pathways, it is critical to be able to globally map the molecular factors that shape cascade function. Yet, to this date, efforts to systematically identify regulators of GPCR/cAMP signaling have been lacking. Here, we combined genome-wide screening based on CRISPR interference with a novel sortable transcriptional reporter that provides robust readout for cAMP signaling, and carried out a functional screen for regulators of the pathway. Due to the sortable nature of the platform, we were able to assay regulators with strong and moderate phenotypes by analyzing sgRNA distribution among three fractions with distinct reporter expression. We identified 45 regulators with strong and 50 regulators with moderate phenotypes not previously known to be involved in cAMP signaling. In follow-up experiments, we validated the functional effects of seven newly discovered mediators (NUP93, PRIM1, RUVBL1, PKMYT1, TP53, SF3A2, and HRAS), and showed that they control distinct steps of the pathway. Thus, our study provides proof of principle that the screening platform can be applied successfully to identify bona fide regulators of GPCR/second messenger cascades in an unbiased and high-throughput manner, and illuminates the remarkable functional diversity among GPCR regulators.


Assuntos
Sistemas CRISPR-Cas/genética , Proliferação de Células/genética , AMP Cíclico/genética , Receptores Acoplados a Proteínas G/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Transporte/genética , Diferenciação Celular/genética , Células Cultivadas , DNA Helicases/genética , DNA Primase/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Processamento de RNA/genética , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética
10.
Blood Adv ; 4(13): 2899-2911, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32589729

RESUMO

Cancer cells commonly develop resistance to immunotherapy by loss of antigen expression. Combinatorial treatments that increase levels of the target antigen on the surface of cancer cells have the potential to restore efficacy to immunotherapy. Here, we use our CRISPR interference- and CRISPR activation-based functional genomics platform to systematically identify pathways controlling cell surface expression of the multiple myeloma immunotherapy antigen B-cell maturation antigen (BCMA). We discovered that pharmacologic inhibition of HDAC7 and the Sec61 complex increased cell surface BCMA, including in primary patient cells. Pharmacologic Sec61 inhibition enhanced the antimyeloma efficacy of a BCMA-targeted antibody-drug conjugate. A CRISPR interference chimeric antigen receptor T cells (CAR-T cells) coculture screen enabled us to identify both antigen-dependent and antigen-independent mechanisms controlling response of myeloma cells to BCMA-targeted CAR-T cells. Thus, our study shows the potential of CRISPR screens to uncover mechanisms controlling response of cancer cells to immunotherapy and to suggest potential combination therapies.


Assuntos
Antígeno de Maturação de Linfócitos B , Mieloma Múltiplo , Antígeno de Maturação de Linfócitos B/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Imunoterapia , Imunoterapia Adotiva , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Linfócitos T
11.
Neuron ; 104(2): 239-255.e12, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31422865

RESUMO

CRISPR/Cas9-based functional genomics have transformed our ability to elucidate mammalian cell biology. However, most previous CRISPR-based screens were conducted in cancer cell lines rather than healthy, differentiated cells. Here, we describe a CRISPR interference (CRISPRi)-based platform for genetic screens in human neurons derived from induced pluripotent stem cells (iPSCs). We demonstrate robust and durable knockdown of endogenous genes in such neurons and present results from three complementary genetic screens. First, a survival-based screen revealed neuron-specific essential genes and genes that improved neuronal survival upon knockdown. Second, a screen with a single-cell transcriptomic readout uncovered several examples of genes whose knockdown had strikingly cell-type-specific consequences. Third, a longitudinal imaging screen detected distinct consequences of gene knockdown on neuronal morphology. Our results highlight the power of unbiased genetic screens in iPSC-derived differentiated cell types and provide a platform for systematic interrogation of normal and disease states of neurons. VIDEO ABSTRACT.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Silenciamento de Genes/métodos , Células-Tronco Pluripotentes Induzidas , Neurônios/metabolismo , Sobrevivência Celular , Humanos , Microscopia Confocal , Neurônios/citologia , RNA-Seq , Análise de Célula Única
12.
Elife ; 82019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31149896

RESUMO

The unfolded protein response (UPR) detects and restores deficits in the endoplasmic reticulum (ER) protein folding capacity. Ceapins specifically inhibit the UPR sensor ATF6α, an ER-tethered transcription factor, by retaining it at the ER through an unknown mechanism. Our genome-wide CRISPR interference (CRISPRi) screen reveals that Ceapins function is completely dependent on the ABCD3 peroxisomal transporter. Proteomics studies establish that ABCD3 physically associates with ER-resident ATF6α in cells and in vitro in a Ceapin-dependent manner. Ceapins induce the neomorphic association of ER and peroxisomes by directly tethering the cytosolic domain of ATF6α to ABCD3's transmembrane regions without inhibiting or depending on ABCD3 transporter activity. Thus, our studies reveal that Ceapins function by chemical-induced misdirection which explains their remarkable specificity and opens up new mechanistic routes for drug development and synthetic biology.


Assuntos
Fator 6 Ativador da Transcrição/antagonistas & inibidores , Organelas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Resposta a Proteínas não Dobradas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Sistemas CRISPR-Cas/genética , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Organelas/efeitos dos fármacos , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Fenótipo , Ligação Proteica/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
13.
Nat Biotechnol ; 36(2): 170-178, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29334369

RESUMO

Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair. Based on the results from over 100,000 perturbed gene pairs, we reconstruct a directional dependency network for human K562 leukemia cells and demonstrate how our approach allows the determination of directionality in activating genetic interactions. Our interaction network connects previously uncharacterized genes to well-studied pathways and identifies targets relevant for therapeutic intervention.


Assuntos
Proteína 9 Associada à CRISPR/genética , Epistasia Genética/genética , Redes Reguladoras de Genes/genética , Biologia Computacional , Técnicas de Inativação de Genes , Humanos , Células K562 , Staphylococcus aureus/genética , Streptococcus pyogenes/genética , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA