Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(1): 40, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38110769

RESUMO

Based on Au nano-cone array (Au-NCA) and a three-segment hybridization strategy, a novel SERS biosensor is proposed for the ultrasensitive detection of the microRNA miR-21. The uniform, stable, and reproducible Au-NCA was prepared by the single-layer colloidal ball template method. Subsequently, the target was hybridized with sequence 2. The resulting target-sequence 2 complex was then hybridized with sequence 1 anchored on Au-NCA. Thus, a three-segment sequence complex was formed. SERS measurements can be performed without the need for complex purification and amplification steps. Due to the ability of miR-21 to perform specific complementary hybridization with two sequences, SERS biosensors have superior specificity for miR-21 without interference from other miRNAs. Under the optimal conditions, the SERS biosensor was applied and the limit of detection (LOD) was as low as 3.02 aM. This method has been successfully used to the detection of miR-21 in the serum of lymphoma patients and healthy volunteers. The results are consistent with the traditional test methods. Therefore, this novel SERS biosensor shows excellent clinical translational potential in the detection of lymphoma.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Humanos , Análise Espectral Raman/métodos , Ouro , Hibridização de Ácido Nucleico
2.
J Virol ; 97(5): e0005423, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37133376

RESUMO

The porcine reproductive and respiratory syndrome viruses (PRRSV) led to a global panzootic and huge economical losses to the pork industry. PRRSV targets the scavenger receptor CD163 for productive infection. However, currently no effective treatment is available to control the spread of this disease. Using bimolecular fluorescence complementation (BiFC) assays, we screened a set of small molecules potentially targeting the scavenger receptor cysteine-rich domain 5 (SRCR5) of CD163. We found that the assay examining protein-protein interactions (PPI) between PRRSV glycoprotein 4 (GP4) and the CD163-SRCR5 domain mainly identifies compounds that potently inhibit PRRSV infection, while examining the PPI between PRRSV-GP2a and the SRCR5 domain maximized the identification of positive compounds, including additional ones with various antiviral capabilities. These positive compounds significantly inhibited both types 1 and 2 PRRSV infection of porcine alveolar macrophages. We confirmed that the highly active compounds physically bind to the CD163-SRCR5 protein, with dissociation constant (KD) values ranging from 28 to 39 µM. Structure-activity-relationship (SAR) analysis revealed that although both the 3-(morpholinosulfonyl)anilino and benzenesulfonamide moieties in these compounds are critical for the potency to inhibit PRRSV infection, the morpholinosulfonyl group can be replaced by chlorine substituents without significant loss of antiviral potency. Our study established a system for throughput screening of natural or synthetic compounds highly effective on blocking of PRRSV infection and shed light on further SAR modification of these compounds. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Current vaccines cannot provide cross protection against different strains, and there are no effective treatments available to hamper the spread of this disease. In this study, we identified a group of new small molecules that can inhibit the PRRSV interaction with its specific receptor CD163 and dramatically block the infection of both types 1 and type 2 PRRSVs to host cells. We also demonstrated the physical association of these compounds with the SRCR5 domain of CD163. In addition, molecular docking and structure-activity relationship analyses provided new insights for the CD163/PRRSV glycoprotein interaction and further improvement of these compounds against PRRSV infection.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Simulação de Acoplamento Molecular , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Receptores Depuradores
3.
Sci Rep ; 12(1): 5937, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396364

RESUMO

With increasing antibiotic resistance, the use of plant derived antimicrobials (PDAs) has gained momentum. Here, we investigated the toxicity of trans-cinnamaldehyde, eugenol, and carvacrol after intramuscular injection in mice. Two doses of each PDA-300 and 500 mg/kg body weight-and vehicle controls were injected into the muscle of the right hind limb of CD-1 adult mice (n = 8/treatment). Ten physical/behavioral parameters were monitored hourly for 2 h and twice daily for 4 days post-injection together with postmortem examination of leg muscles and organs. Within the first 2 days of carvacrol treatment, one male died in each dose level and a third male receiving 500 mg/kg was removed from the study. No mortality was seen with any other treatment. Among all 81 parameters examined, significant higher relative liver weights (300 and 500 mg/kg eugenol groups; P < 0.05) and relative kidney weights (300 mg/kg carvacrol group; P < 0.001) were observed. Taken together, little to mild toxicity was seen for trans-cinnamaldehyde and eugenol, respectively, while carvacrol exerted more toxicity in males. This study lays the foundation for future extensive work with large sample size, varied treatment durations, and additional treatment levels.


Assuntos
Anti-Infecciosos , Eugenol , Animais , Anti-Infecciosos/toxicidade , Testes de Carcinogenicidade , Modelos Animais de Doenças , Eugenol/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos , Testes de Mutagenicidade , Ratos , Ratos Endogâmicos F344
4.
Mol Reprod Dev ; 88(10): 694-704, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34596291

RESUMO

Regulation of the mammalian embryo involves cell-signaling molecules produced by the maternal oviduct and endometrium. Here, datasets on the transcriptome of the gestational Days 5 and 6 bovine morula and Day 5 maternal endometrium were examined to identify receptor genes expressed by the morula and expression of the corresponding ligand-related genes in the endometrium. A total of 175 receptor genes were identified in the morula, including 48 encoding for growth factors or WNT signaling molecules, 25 for cytokines and chemokines, 35 involved in juxtacrine and matricellular signaling and 25 encoding for receptors for small molecules. Some of the highly-expressed pairs of endometrial ligand and embryo receptor genes included MDK and its receptors ITGB1, SDC4 and LRP2, WNT5A (RYK), VEGFA (ITGB1), GPI (AMFR), and the hedgehog proteins IHH and DHH (HHIP). The most highly expressed receptors for small molecules were GPRC5C (retinoic acid receptor), PGRMC1 (progesterone), and CHRNB2 (acetylcholine). There were also 84 genes encoding for cell signaling ligands expressed by the morula, with the most highly expressed being GPI, AIMP1, TIMP1, IK, and CCN2. The atlas of receptor and ligand genes should prove useful for understanding details of the communication between the embryo and mother that underlies optimal embryonic development.


Assuntos
Endométrio , Proteínas Hedgehog , Animais , Bovinos , Implantação do Embrião/fisiologia , Embrião de Mamíferos/metabolismo , Endométrio/metabolismo , Feminino , Proteínas Hedgehog/metabolismo , Humanos , Ligantes , Mamíferos , Proteínas de Membrana/metabolismo , Mórula , Gravidez , Receptores de Progesterona/metabolismo
5.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638830

RESUMO

Pluripotent stem cells (PSCs) have been successfully developed in many species. However, the establishment of bovine-induced pluripotent stem cells (biPSCs) has been challenging. Here we report the generation of biPSCs from bovine mesenchymal stem cells (bMSCs) by overexpression of lysine-specific demethylase 4A (KDM4A) and the other reprogramming factors OCT4, SOX2, KLF4, cMYC, LIN28, and NANOG (KdOSKMLN). These biPSCs exhibited silenced transgene expression at passage 10, and had prolonged self-renewal capacity for over 70 passages. The biPSCs have flat, primed-like PSC colony morphology in combined media of knockout serum replacement (KSR) and mTeSR, but switched to dome-shaped, naïve-like PSC colony morphology in mTeSR medium and 2i/LIF with single cell colonization capacity. These cells have comparable proliferation rate to the reported primed- or naïve-state human PSCs, with three-germ layer differentiation capacity and normal karyotype. Transcriptome analysis revealed a high similarity of biPSCs to reported bovine embryonic stem cells (ESCs) and embryos. The naïve-like biPSCs can be incorporated into mouse embryos, with the extended capacity of integration into extra-embryonic tissues. Finally, at least 24.5% cloning efficiency could be obtained in nuclear transfer (NT) experiment using late passage biPSCs as nuclear donors. Our report represents a significant advance in the establishment of bovine PSCs.


Assuntos
Técnicas de Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição/biossíntese , Animais , Bovinos , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Células-Tronco Mesenquimais/citologia , Camundongos , Fatores de Transcrição/genética
6.
Sci Rep ; 11(1): 16281, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381064

RESUMO

Essential oils and their active components, referred here as plant derived antimicrobials (PDAs), have been used for their antimicrobial, anti-inflammatory and antioxidant properties. Many reports also document PDAs' cytotoxic effects on cancerous cells, raising the hope that they could be used for cancer treatments. Due to the lack of specificity, we hypothesize that PDAs are cytotoxic to both cancerous and non-cancerous cells. Trans-cinnamaldehyde (TCA), carvacrol, and eugenol were assessed for their cytotoxicity on cancerous HeLa cells and normal skin fibroblasts (CCD-1123Sk, CCD) by MTT and LDH assays, flow cytometry, and reverse transcription quantitative PCR (RT-qPCR). After 24 h of treatment, carvacrol and TCA significantly decreased cell viability (by more than 50%) at 100 µg/ml, whereas eugenol was ineffective up to 400 µg/ml. Cell detachment and significantly increased apoptosis were observed with 100 µg/ml of TCA on both cell types. RT-qPCR for apoptotic genes (BCL2, CASP3 and CASP8) and necrosis genes (MLKL, RIPK1 and RIPK3) did not show significant differences between control and treated cells of both types, with the exception of eugenol-treated HeLa cells in which expression of BCL2, MLKL and RIPK1 was significantly higher than controls. Taken together, we conclude that the three PDAs studied here exhibited similar cytotoxic effects on both cancerous and non-cancerous cells.


Assuntos
Acroleína/análogos & derivados , Cimenos/farmacologia , Citotoxinas/farmacologia , Eugenol/farmacologia , Acroleína/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Células HeLa , Humanos , Óleos Voláteis/farmacologia
7.
BMC Genomics ; 19(1): 183, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510661

RESUMO

BACKGROUND: The generation of induced pluripotent stem cells (iPSCs) has underdefined mechanisms. In addition, leukemia inhibitory factor (LIF) activated Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is the master regulator for naïve-state pluripotency achievement and maintenance. However, the regulatory process to attain naïve pluripotent iPSCs is not well understood. RESULTS: We performed transcriptome analysis to dissect the genomic expression during mouse iPSC induction, with or without blocking the JAK/STAT3 activity. We describe JAK/STAT3 signaling-specific biological events such as gametogenesis, meiotic/mitotic cell cycle, and DNA repair, and JAK/STAT3-dependent expression of key transcription factors such as the naïve pluripotency-specific genes, developmental pluripotency associated (Dppa) family, along with histone modifiers and non-coding RNAs in reprogramming. We discover that JAK/STAT3 activity does not affect early phase mesenchymal to epithelial transition (MET) but is necessary for proper imprinting of the Dlk1-Dio3 region, an essential event for pluripotency achievement at late-reprogramming stage. This correlates with the JAK/STAT3-dependent stimulation of Dppa3 and Polycomb repressive complex 2 (PRC2) genes. We further demonstrate that JAK/STAT3 activity is essential for DNA demethylation of pluripotent loci including Oct4, Nanog, and the Dlk1-Dio3 regions. These findings correlate well with the previously identified STAT3 direct targets. We further propose a model of pluripotency achievement regulated by JAK/STAT3 signaling during the reprogramming process. CONCLUSIONS: Our study illustrates novel insights for JAK/STAT3 promoted pluripotency establishment, which are valuable for further improving the naïve-pluripotent iPSC generation across different species including humans.


Assuntos
Reprogramação Celular , Epigênese Genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Células Cultivadas , Desmetilação do DNA , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Janus Quinase 1/genética , Meiose , Camundongos , Fator de Transcrição STAT3/genética
8.
Biol Open ; 7(1)2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29212799

RESUMO

The regulatory process of naïve-state induced pluripotent stem cell (iPSC) generation is not well understood. Leukemia inhibitory factor (LIF)-activated Janus kinase/signal transducer and activator of transcription 3 (Jak/Stat3) is the master regulator for naïve-state pluripotency achievement and maintenance. The estrogen-related receptor beta (Esrrb) serves as a naïve-state marker gene regulating self-renewal of embryonic stem cells (ESCs). However, the interconnection between Esrrb and LIF signaling for pluripotency establishment in reprogramming is unclear. We screened the marker genes critical for complete reprogramming during mouse iPSC generation, and identified genes including Esrrb that are responsive to LIF/Jak pathway signaling. Overexpression of Esrrb resumes the reprogramming halted by inhibition of Jak activity in partially reprogrammed cells (pre-iPSCs), and leads to the generation of pluripotent iPSCs. We further show that neither overexpression of Nanog nor stimulation of Wnt signaling, two upstream regulators of Esrrb in ESCs, stimulates the expression of Esrrb in reprogramming when LIF or Jak activity is blocked. Our study demonstrates that Esrrb is a specific reprogramming factor regulated downstream of the LIF/Jak signaling pathway. These results shed new light on the regulatory role of LIF pathway on complete pluripotency establishment during iPSC generation.

9.
Oncotarget ; 7(32): 51865-51874, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27340864

RESUMO

Matrix metalloproteinases (MMPs) are closely associated with tumor proliferation, invasion and metastasis. In this study, we determined the MMPs expression and their clinical significances in gastric cancer (GC). We first extensive studied MMPs expression in GC in The Cancer Genome Atlas (TCGA) RNA sequence database and found MMP16 was candidate biomarker in GC. Then we validated clinical significance of MMP16 mRNA expression in 167 GC by RT-PCR. Survival analysis showed that high expression of MMP16 indicated poor overall and disease free survival (P<0.001). The proliferation and invasion potential of GC cells were determined by CCK8, colony formation and Transwell assays. Silencing of MMP16 expression significantly decreased the invasion and proliferation capacity of GC cells (P<0.05). In conclusion, MMP16 was highly expressed and correlated with poor prognosis in GC patients by promoting proliferation and invasion of GC cells. MMP16 could be a novel molecular target and prognostic marker for GC.


Assuntos
Biomarcadores Tumorais/análise , Proliferação de Células , Metaloproteinase 16 da Matriz/biossíntese , Neoplasias Gástricas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Metaloproteinase 16 da Matriz/análise , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Prognóstico , Modelos de Riscos Proporcionais , Neoplasias Gástricas/enzimologia
10.
J Cell Sci ; 127(Pt 18): 3998-4008, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25037569

RESUMO

Akt plays an important role in cell growth, proliferation and survival. The specific roles of the three Akt isoforms in somatic cell reprogramming have not been investigated. Here we report that, during iPSC generation, enhanced Akt1 activity promotes complete reprogramming mainly through increased activation of Stat3 in concert with leukemia inhibitory factor (LIF) and, to a lesser extent, through promotion of colony formation. Akt1 augments Stat3 activity through activation of mTOR and upregulation of LIF receptor expression. Similarly, enhanced Akt2 or Akt3 activation also promotes reprogramming and coordinates with LIF to activate Stat3. Blocking Akt1 or Akt3 but not Akt2 expression prohibits cell proliferation and reprogramming. Furthermore, the halt in cell proliferation and reprogramming caused by mTOR and Akt inhibitors can be reversed by inhibition of GSK3. Finally, we found that expressing the GSK3ß target Esrrb overrides inhibition of Akt and restores reprogramming. Our data demonstrated that during reprogramming, Akt promotes establishment of pluripotency through co-stimulation of Stat3 activity with LIF. Akt1 and Akt3 are essential for the proliferation of reprogrammed cells, and Esrrb supports cell proliferation and complete reprogramming during Akt signaling.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Proliferação de Células , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
11.
JAKSTAT ; 2(4): e24935, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24470976

RESUMO

Reprogramming somatic cells to pluripotency, especially by the induced pluripotent stem cell (iPSC) technology, has become widely used today to generate various types of stem cells for research and for regenerative medicine. However the mechanism(s) of reprogramming still need detailed elucidation, including the roles played by the leukemia inhibitory factor (LIF) signaling pathway. LIF is central in maintaining the ground state pluripotency of mouse embryonic stem cells (ESCs) and iPSCs by activating the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) pathway. Characterizing and understanding this pathway holds the key to generate naïve pluripotent human iPSCs which will facilitate the development of patient-specific stem cell therapy. Here we review the historical and recent developments on how LIF signaling pathway regulates ESC pluripotency maintenance and somatic cell reprogramming, with a focus on JAK-STAT3.

12.
Stem Cells ; 30(12): 2645-56, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22968989

RESUMO

Although leukemia inhibitory factor (LIF) maintains the ground state pluripotency of mouse embryonic stem cells and induced pluripotent stem cells (iPSCs) by activating the Janus kinase/signal transducer and activator of transcription 3 (Jak/Stat3) pathway, the mechanism remained unclear. Stat3 has only been shown to promote complete reprogramming of epiblast and neural stem cells and partially reprogrammed cells (pre-iPSCs). We investigated if and how Jak/Stat3 activation promotes reprogramming of terminally differentiated mouse embryonic fibroblasts (MEFs). We demonstrated that activated Stat3 not only promotes but also is essential for the pluripotency establishment of MEFs during reprogramming. We further demonstrated that during this process, inhibiting Jak/Stat3 activity blocks demethylation of Oct4 and Nanog regulatory elements in induced cells, which are marked by suppressed endogenous pluripotent gene expression. These are correlated with the significant upregulation of DNA methyltransferase (Dnmt) 1 and histone deacetylases (HDACs) expression as well as the increased expression of lysine-specific histone demethylase 2 and methyl CpG binding protein 2. Inhibiting Jak/Stat3 also blocks the expression of Dnmt3L, which is correlated with the failure of retroviral transgene silencing. Furthermore, Dnmt or HDAC inhibitor but not overexpression of Nanog significantly rescues the reprogramming arrested by Jak/Stat3 inhibition or LIF deprivation. Finally, we demonstrated that LIF/Stat3 signal also represents the prerequisite for complete reprogramming of pre-iPSCs. We conclude that Jak/Stat3 activity plays a fundamental role to promote pluripotency establishment at the epigenetic level, by facilitating DNA demethylation/de novo methylation, and open-chromatin formation during late-stage reprogramming.


Assuntos
Reprogramação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Janus Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Reprogramação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigenômica , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Janus Quinases/genética , Camundongos , Fator de Transcrição STAT3/genética , Transdução de Sinais
13.
Cell Reprogram ; 14(1): 1-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22257162

RESUMO

The efficiency of embryonic stem (ES) cell derivation relies on an optimized culture medium and techniques for treating preimplantation stage embryos. Recently, ES cell derivation from the preblastocyst developmental stage was reported by removing the zona pellucida from embryos of the most efficient strain for ES cell derivation (129Sv) during early preimplantation. Here, we showed that ES cells can be efficiently derived and maintained in a modified medium (MEMα), from preblastocysts of a low-efficiency mouse strain (a hybrid consisting of 50% B6, 25% CBA, and 25% DBA). Preblastocyst-derived ES cell lines were normal in terms of pluripotency-related protein expression, and chromosome number. Also, preblastocyst-derived ES cell lines from various culture conditions showed pluripotency in vivo through teratoma analysis. Interestingly, ES cell lines produced from preblastocysts and blastocysts, regardless of the derivation culture conditions, are nearly indistinguishable by their global gene expression profiles.


Assuntos
Blastocisto/citologia , Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Mórula/citologia , Animais , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Linhagem Celular , Meios de Cultura/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Cariótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Mórula/efeitos dos fármacos , Mórula/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Teratoma
14.
Cell Reprogram ; 12(2): 151-60, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20677930

RESUMO

The goals of the current study were to (1) improve culture conditions and (2) chemical passaging of bovine embryonic stem cell-like (bESC-like) cells. Specifically, the effects of human leukemia inhibitory factor (hLIF), two types of feeders, mouse embryonic fibroblast (MEF) and bovine embryonic fibroblast (BEF), as well as three different enzymatic treatments including Trypsin-EDTA, TrypLE, and Liberase Blendzymes 3 were investigated. The addition of hLIF at 1000 U/mL to the culture medium (41.2 and 36.9%), and the use of either MEF or BEF feeders (40.3 and 38.1%) had no significant effect on the ability of inner cell masses (ICMs) to form primary cell colonies compared to controls. All bESC-like cells were first dissociated mechanically for three passages followed by enzymatic dissociation. The ability to maintain ESC morphology to passage 10 was compared among the three enzymes above. More bESC-like cell lines survived beyond passage 10 when treated with TrypLE compared to Trypson-EDTA (28.8 and 12.6%; p < 0.05), and bESC-like cells differentiated quickly when treated with Liberase Blendzyme 3. The bESC-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as SSEA-1, AP, OCT-4, and Nanog. When removed from feeders, these bESC-like cells formed embryoid bodies (EBs) in a suspension culture. When EBs were cultured on tissue culture plates, they differentiated into various cell types. In summary, we were able to culture bESC-like cells more than 10 passages by enzymatic dissociation, which is important in gene targeting, maintenance, and banking of bESC lines.


Assuntos
Técnicas de Cultura de Células , Técnicas de Cultura Embrionária/métodos , Células-Tronco Embrionárias/citologia , Animais , Bovinos , Diferenciação Celular , Células Cultivadas/citologia , Meios de Cultura/farmacologia , Feminino , Fertilização in vitro , Humanos , Fator Inibidor de Leucemia/metabolismo , Camundongos , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA