Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Res ; 270: 66-80, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38604333

RESUMO

Sepsis-induced acute lung injury (ALI) is a serious complication of sepsis and the predominant cause of death. Exosomes released by lung tissue cells critically influence the progression of ALI during sepsis by modulating the inflammatory microenvironment. However, the molecular mechanisms by which exosome-mediated intercellular signaling exacerbates ALI in septic infection remain undefined. Our study found increased levels of exosomal Tenascin-C (TNC) in the plasma of both patients and mice with ALI, showing a strong association with disease progression. By integrating exosomal proteomics with transcriptome sequencing and experimental validation, we elucidated that LPS induce unresolved endoplasmic reticulum stress (ERs) in alveolar epithelial cells (AECs), ultimately leading to the release of exosomal TNC through the activation of PERK-eIF2α and the transcription factor CHOP. In the sepsis mouse model with TNC knockout, we noted a marked reduction in macrophage pyroptosis. Our detailed investigations found that exosomal TNC binds to TLR4 on macrophages, resulting in an augmented production of ROS, subsequent mitochondrial damage, activation of the NF-κB signaling pathway, and induction of DNA damage response. These interconnected events culminate in macrophage pyroptosis, thereby amplifying the release of inflammatory cytokines. Our findings demonstrate that exosomal Tenascin-C, released from AECs under unresolved ER stress, exacerbates acute lung injury by intensifying sepsis-associated inflammatory responses. This research provides new insights into the complex cellular interactions underlying sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Exossomos , Inflamação , Macrófagos , Piroptose , Sepse , Tenascina , Animais , Tenascina/metabolismo , Tenascina/genética , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Exossomos/metabolismo , Sepse/complicações , Sepse/metabolismo , Humanos , Camundongos , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Estresse do Retículo Endoplasmático , Camundongos Knockout
2.
J Hazard Mater ; 471: 134331, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677116

RESUMO

Recent studies are identified the mitochondria as critical targets of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) induced neurotoxicity. This study aimed at examining the impact of PBDE-47 exposure on mitochondrial translation, and its subsequent effect on PBDE-47 neurotoxicity. The Sprague-Dawley (SD) rat model and neuroendocrine pheochromocytoma (PC12) cells were adopted for the measurements of mitochondrial ATP levels, mitochondrial translation products, and expressions of important mitochondrial regulators, such as required meiotic nuclear division 1 (RMND1), estrogen-related receptor α (ERRα), and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). To delve into the role of PGC-1α/ERRα axis in mitochondrial translation, 2-(4-tert-butylphenyl) benzimidazole (ZLN005) was employed. Both cellular and animal model results shown that PBDE-47 impeded PGC-1α/ERRα axis and mitochondrial translation. PBDE-47 suppressed mitochondrial function in rat hippocampus and PC12 cells by decreasing relative mitochondrial DNA (mtDNA) content, mitochondrial translation products, and mitochondrial ATP levels. Particularly, ZLN005 reversed PBDE-47 neurotoxicity by enhancing mitochondrial translation through activation of PGC-1α/ERRα axis, yet suppressing PGC-1α with siRNA attenuates its neuroprotective effect in vitro. In conclusion, this work highlights the importance of mitochondrial translation in PBDE-47 neurotoxicity by presenting results from cellular and animal models and suggests a potential therapeutic approach through activation of PGC-1α/ERRα axis. ENVIRONMENTAL IMPLICATION: PBDEs have attracted extensive attention because of their high lipophilicity, persistence, and detection levels in various environmental media. Increasing evidence has shown that neurodevelopmental disorders in children are associated with PBDE exposure. Several studies have also found that perinatal PBDE exposure can cause long-lasting neurobehavioral abnormalities in experimental animals. Our recent studies have also demonstrated the impact of PBDE-47 exposure on mitochondrial biogenesis and dynamics, leading to memory and neurobehavioral deficits. Therefore, we explore whether the pathological mechanism of PBDE-47-induced neurotoxicity involves the regulation of mitochondrial translation through the PGC-1α/ERRα axis.


Assuntos
Benzimidazóis , Receptor ERRalfa Relacionado ao Estrogênio , Éteres Difenil Halogenados , Mitocôndrias , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Masculino , Ratos , Benzimidazóis/farmacologia , Éteres Difenil Halogenados/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Síndromes Neurotóxicas/metabolismo , Células PC12 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Biossíntese de Proteínas/efeitos dos fármacos , Ratos Sprague-Dawley
3.
Small ; 20(1): e2304491, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37653587

RESUMO

A composite nanoagent capable of phototriggered tumor microenvironment (TME) regulation is developed based on copper (II) metal-organic frameworks (MOFs) with encapsulation of blebbistatin (Bb) and surface modification of fibroblast activation protein-αtargeted peptide (Tp). Tp enables active targeting of the nanoagents to cancer-associated fibroblast (CAF) while near-infrared light triggers Cu2+ -to-Cu+ photoreduction in MOFs, which brings about the collapse of MOFs and the release of Bb and Cu+ . Bb mediates photogeneration of hydroxyl radicals (•OH) and therefore inhibits extracellular matrix production by inducing CAF apoptosis, which facilitates the penetration of nanoagent to deep tumor tissue. The dual-channel generation of •OH based on Bb and the Cu+ species, via distinct mechanisms, synergistically reinforces oxidative stress in TME capable of inducing immunogenic cell death, which activates the antitumor immune response and therefore reverses the immunosuppressive TME. The synergistic antitumor phototherapy efficacy of such a type of nanoagent based on the abovementioned TME remodeling is unequivocally verified in a cell-derived tumor xenograft model.


Assuntos
Fibroblastos Associados a Câncer , Estruturas Metalorgânicas , Neoplasias , Humanos , Estruturas Metalorgânicas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Microambiente Tumoral , Cobre/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral
4.
J Adv Res ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38036217

RESUMO

INTRODUCTION: Neurological dysfunction induced by fluoride contamination is still one of major concern worldwide. Recently, neuroprotective roles of silent information regulator 1 (SIRT1) focusing on mitochondrial function have been highlighted. However, what roles SIRT1 exerts and the underlying regulative mechanisms, remain largely uncharacterized in such neurotoxic process of fluoride. OBJECTIVES: We aimed at evaluating the regulatory roles of SIRT1 in human neuroblastoma SH-SY5Y cells and Sprague-Dawley rats with fluoride treatment, and to further identify potential miRNA directly targeting SIRT1. METHODS: Pharmacological suppression of SIRT1 by nicotinamide (NIC) and promotion of SIRT1 by adenovirus (Ad-SIRT1) or resveratrol (RSV) were employed to assess the effects of SIRT1 in mitochondrial dysfunction induced by fluoride. Also, miRNAs profiling and bioinformatic prediction were used to screen the miRNAs which can regulate SIRT1 directly. Further, chemical mimic or inhibitor of chosen miRNA was applied to validate the modulation of chosen miRNA. RESULTS: NIC exacerbated defects in mitochondrial network dynamics and cytochrome c (Cyto C) release-driven apoptosis, contributing to fluoride-induced neuronal death. In contrast, the ameliorative effects were observed when overexpressing SIRT1 by Ad-SIRT1 in vitro or RSV in vivo. More importantly, miR-708-3p targeting SIRT1 directly was identified. And interestingly, moreover, treatment with chemically modified miR-708-3p mimic aggravated, while miR-708-3p inhibitor suppressed fluoride-caused neuronal death. Further confirmedly, overexpressing SIRT1 effectively neutralized miR-708-3p mimic-worsened fluoride neuronal death via correcting mitochondrial network dynamics. On contrary, inhibiting SIRT1 counteracted the promotive effects of miR-708-3p inhibitor against neurotoxic response by fluoride through aggravating abnormal mitochondrial network dynamics. CONCLUSION: These data underscore the functional importance of SIRT1 to mitochondrial network dynamics in neurotoxic process of fluoride and further screen a novel unreported neuronal function of miR-708-3p as an upstream regulator of targeting SIRT1, which has important theoretical implications for a potential therapeutic and preventative target for treatment of neurotoxic progression by fluoride.

5.
Nat Commun ; 14(1): 4505, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495590

RESUMO

The therapeutic efficacy of whole tumor cell vaccines (TCVs) is modest, which has delayed their translation into personalized immunotherapies in the clinic. Here, we develop a TCV platform based on photothermal nanoparticle-loaded tumor cells, which can be rationally applied to diverse tumor types to achieve on-demand boost of anti-tumor immune responses for inhibiting tumor growth. During the fabrication process, mild photothermal heating by near-infrared (NIR) laser irradiation induces the nanoparticle-bearing tumor cells to express heat shock proteins as endogenous adjuvants. After a single vaccination at the back of tumor-bearing mice, non-invasive NIR laser irradiation further induces mild hyperthermia at vaccination site, which promotes the recruitment, activation, and antigen presentation by dendritic cells. Using an indicator we term fluctuation of tumor growth rate, we determine appropriate irradiation regimens (including optimized irradiation intervals and times). This TCV platform enables on-demand NIR manipulation of immune responses, and we demonstrate potent therapeutic efficacy against six murine models that mimick a range of clinical scenarios, including a model based on humanized mice and patient-derived tumor xenografts.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Vacinas , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Fototerapia , Neoplasias/terapia , Apresentação de Antígeno , Modelos Animais de Doenças , Lasers
6.
Sci Total Environ ; 869: 161738, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690096

RESUMO

Evidence suggests that fluoride-induced neurodevelopment damage is linked to mitochondrial disorder, yet the detailed mechanism remains unclear. A cohort of Sprague-Dawley rats developmentally exposed to sodium fluoride (NaF) was established to simulate actual exposure of human beings. Using high-input proteomics and small RNA sequencing technology in rat hippocampus, we found mitochondrial translation as the most striking enriched biological process after NaF treatment, which involves the differentially expressed Required Meiotic Nuclear Division 1 homolog (RMND1) and neural-specific miR-221-3p. Further experiments in vivo and in vitro neuroendocrine pheochromocytoma (PC12) cells demonstrated that NaF impaired mitochondrial translation and function, as shown by declined mitochondrial membrane potential and inhibited expression of mitochondrial translation factors, mitochondrial translation products, and OXPHOS complexes, which was concomitant with decreased RMND1 and transcription factor c-Fos in mRNA and proteins as well as elevated miR-221-3p. Notably, RMND1 overexpression alleviated the NaF-elicited mitochondrial translation impairment by up-regulating translation factors, but not vice versa. Interestingly, ChIP-qPCR confirmed that c-Fos specifically controls the RMND1 transcription through direct binding with Rmnd1 promotor. Interference of gene expression verified c-Fos as an upstream positive regulator of RMND1, implicating in fluoride-caused mitochondrial translation impairment. Furthermore, dual-luciferase reporter assay evidenced that miR-221-3p targets c-Fos by binding its 3' untranslated region. By modulating the miR-221-3p expression, we identified miR-221-3p as a critical negative regulator of c-Fos. More importantly, we proved that miR-221-3p inhibitor improved mitochondrial translation and mitochondrial function to combat NaF neurotoxicity via activating the c-Fos/RMND1 axis, whereas miR-221-3p mimic tended towards opposite effects. Collectively, our data suggest fluoride impairs mitochondrial translation by dysregulating the miR-221-3p/c-Fos/RMND1 axis to trigger mitochondrial dysfunction, leading to neuronal death and neurodevelopment defects.


Assuntos
Fluoretos , MicroRNAs , Transtornos do Neurodesenvolvimento , Animais , Humanos , Ratos , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/farmacologia , Fluoretos/metabolismo , Fluoretos/toxicidade , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/patologia , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/metabolismo , Células PC12 , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo
7.
Toxicol Sci ; 191(1): 123-134, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36269211

RESUMO

The potential adverse effects of 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) on neurons are extensively studied, and mitochondria are identified as critical targets. This study aimed to investigate whether PBDE-47 impairs mitochondrial biogenesis via the miR-128-3p/PGC-1α axis to trigger mitochondrial dysfunction-related neuronal damage. In vitro neuroendocrine pheochromocytoma (PC12) cells and in vivo Sprague Dawley rat model were adopted. In this study, biochemical methods were used to examine mitochondrial ATP content, cell viability, and expressions of key mitochondrial biogenesis regulators, including peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM). Mimics and inhibitors of miR-128-3p were employed to explore its role in PBDE-47-induced neurotoxicity. Both in vivo and in vitro evidences suggested that PBDE-47 suppressed PGC-1α/NRF1/TFAM signaling pathways and mitochondrial DNA (mtDNA) encoding proteins synthesis. PBDE-47 also suppressed the relative mtDNA content, mRNA levels of mtDNA-encoded subunits, and mitochondrial ATP levels in vitro. Specifically, 2-(4-tert-butylphenyl) benzimidazole (ZLN005) alleviated PBDE-47-induced neuronal death through the improvement of mitochondrial function by activating PGC-1α/NRF1/TFAM signaling pathways. Mechanistically, PBDE-47 dramatically upregulated miR-128-3p expression. Furthermore, miR-128-3p inhibition enhanced PGC-1α/NRF1/TFAM signaling and abolished PBDE-47-induced impairment of mitochondrial biogenesis. In summary, this study provides in vitro evidence to reveal the role of mitochondrial biogenesis in PBDE-47-induced mitochondrial dysfunction and related neurotoxicity and suggests that miR-128-3p/PGC-1α axis may be a therapeutic target for PBDE-47 neurotoxicity.


Assuntos
MicroRNAs , Biogênese de Organelas , Ratos , Animais , Ratos Sprague-Dawley , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , MicroRNAs/genética , Trifosfato de Adenosina , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
8.
Biomater Sci ; 10(19): 5520-5534, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35924482

RESUMO

A new type of polymeric nanomicelle-based nanoagent (denoted as PT@MFH hereafter) capable of the highly sensitive release of the chemotherapeutic drug paclitaxel (PTX) upon exposure to a near-infrared (NIR) laser trigger was developed. Specifically, PTX and a photothermal polymer (T-DPPT) were encapsulated in the cavity of nanomicelles, which were constructed from an amphiphilic block copolymer (PCL-PEEP) with a lower critical solution temperature (LCST) of ∼54 °C. Owing to the unprecedented ability of the T-DPPT moiety to harvest near-infrared light, with a mass extinction coefficient at 808 nm of up to ∼80.8 L g-1 cm-1, and convert NIR light to heat, with a photothermal conversion efficiency (η) of up to ∼70%, local hyperthermia was promptly realized via irradiation from an 808 nm laser with extraordinarily low output power. This enabled remarkable contrast in the local temperature and drug release between the "silent" state (prior to phototriggering) and the "activated" state (after phototriggering). This NIR-light-activated local hyperthermia and drug release presented the basis for combined chemotherapy and photothermal therapy (PTT) in antitumor treatment and displayed superb therapeutic efficacy. This pattern together with the high spatial precision imparted by laser triggering jointly contributed to the maximum combined antitumor efficacy to the tumor, while exhibiting minimal side effects on the normal tissues, as preliminarily verified in the in vivo experiment regarding the ability of PT@MFH to efficiently inhibit tumor growth in tumor-bearing model mice.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Raios Infravermelhos , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Neoplasias/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fototerapia , Terapia Fototérmica , Polímeros
9.
Nat Commun ; 12(1): 6399, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737274

RESUMO

Targeting subcellular organelle with multilevel damage has shown great promise for antitumor therapy. Here, we report a core-shell type of nanoagent with iron (III) carboxylate metal-organic frameworks (MOFs) as shell while upconversion nanoparticles (UCNPs) as core, which enables near-infrared (NIR) light-triggered synergistically reinforced oxidative stress and calcium overload to mitochondria. The folate decoration on MOFs shells enables efficient cellular uptake of nanoagents. Based on the upconversion ability of UCNPs, NIR light mediates Fe3+-to-Fe2+ reduction and simultaneously activates the photoacid generator (pHP) encapsulated in MOFs cavities, which enables release of free Fe2+ and acidification of intracellular microenvironment, respectively. The overexpressed H2O2 in mitochondria, highly reactive Fe2+ and acidic milieu synergistically reinforce Fenton reactions for producing lethal hydroxyl radicals (•OH) while plasma photoacidification inducing calcium influx, leading to mitochondria calcium overload. The dual-mitochondria-damage-based therapeutic potency of the nanoagent has been unequivocally confirmed in cell- and patient-derived tumor xenograft models in vivo.


Assuntos
Cálcio/metabolismo , Estruturas Metalorgânicas/farmacologia , Mitocôndrias/metabolismo , Células HeLa , Humanos , Radical Hidroxila/metabolismo , Raios Infravermelhos , Estruturas Metalorgânicas/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Nanoestruturas/química , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação
10.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33771861

RESUMO

To address long-standing issues with tumor penetration and targeting among cancer therapeutics, we developed an anticancer platelet-based biomimetic formulation (N+R@PLTs), integrating photothermal nanoparticles (N) and immunostimulator (R) into platelets (PLTs). Exploiting the aggregative properties of platelets and high photothermal capacity, N+R@PLTs functioned as an arsenal by targeting defective tumor vascular endothelial cells, accumulating in a positive feedback aggregation cascade at sites of acute vascular damage induced by N-generated local hyperthermia, and subsequently secreting nanosized proplatelets (nPLTs) to transport active components to deep tumor tissue. The immunostimulator augmented the immunogenicity of antigens released from ablated tumors, inducing a stronger immunological response to attack residual, metastatic, and recurrent tumors. Following activation by low-power near-infrared light irradiation, the photothermal and immunological components synergistically provide exceptionally high therapeutic efficacy across nine murine models that mimicked a range of clinical requirements, and, most notably, a sophisticated model based on humanized mouse and patient-derived tumor xenograft.

11.
Nanoscale ; 12(33): 17203-17212, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32789405

RESUMO

There is a practical motivation for correlating different types of microscopy for revealing complementary information of ultrastructures with resolution beyond the diffraction limit. The correlative microscopy strategy based on the combination of super-resolution fluorescence imaging with atomic force microscopy (AFM) is expected to provide both the specificity and three-dimensional structural information of nanomaterials. Herein we synthesized a dual-alternating-color photoswitchable fluorescent probe based on a naphthalimide-spiropyran dyad (NI-SP) and explored the capability of such correlative microscopy for visualizing nanostructures with complex structural hierarchy. NI-SP underwent reversible photoswitching between green and red fluorescence based on a reversible photochemical reaction and such reaction-linked correlation between two distinct types of fluorescence signals intrinsically enabled mutual authentication in super-resolution fluorescence imaging. Additionally, such correlative microscopy also demonstrated mutual complementation between different pieces of structural information of the target acquired via fluorescence imaging and AFM, respectively, in which the former reveals spatial distribution of fluorescent dyes in the nanoscale polymer fibroid micelles while the latter maps the topographical structure of the target with complex structural hierarchy. The results obtained in this work proclaimed that the combination of such correlative microscopy with our NI-SP probe is an effective modality for ultrastructural analysis and has future applications in various complex systems such as tissue/organ imaging.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Microscopia de Força Atômica
12.
Theranostics ; 10(11): 4822-4838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308752

RESUMO

Rationale: Potential adverse effects of fluoride on neurodevelopment has been extensively explored and mitochondria have been recognized as critical targets. Mitochondrial biogenesis serves a crucial role in maintaining mitochondrial homeostasis and salubrious properties of resveratrol (RSV) has been well-defined. However, the molecular mechanisms governing mitochondrial biogenesis in developmental fluoride neurotoxicity remain unclear and the related therapeutic dietary agent is lacking. Methods: In vitro neuroblastoma SH-SY5Y cells and in vivo Sprague-Dawley rat model of developmental fluoride exposure were adopted. A total population of 60 children under long-term stable fluoride exposure were also recruited. This work used a combination of biochemical and behavioral techniques. Biochemical methods included analysis of mitochondrial function and mitochondrial biogenesis, as well as mRNA and protein expression of mitochondrial biogenesis signaling molecules, including silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM). Behavioral studies investigated spatial learning and memory ability of rats. Results: Both in vivo and in vitro experiments showed that sodium fluoride (NaF) caused mitochondrial dysfunction and impaired mitochondrial biogenesis. Also, NaF elevated SIRT1 levels and suppressed SIRT1 deacetylase activity along with decreased levels of PGC-1α, NRF1 and TFAM, suggestive of dysregulation of mitochondrial biogenesis signaling molecules. Moreover, enhancement of mitochondrial biogenesis by TFAM overexpression alleviated NaF-induced neuronal death through improving mitochondrial function in vitro. Further in vivo and in vitro studies identified RSV, the strongest specific SIRT1 activator, improved mitochondrial biogenesis and subsequent mitochondrial function to protect against developmental fluoride neurotoxicity via activating SIRT1-dependent PGC-1α/NRF1/TFAM signaling pathway. Noteworthy, epidemiological data indicated intimate correlations between disturbed circulating levels of mitochondrial biogenesis signaling molecules and fluoride-caused intellectual loss in children. Conclusions: Our data suggest the pivotal role of impaired mitochondrial biogenesis in developmental fluoride neurotoxicity and the underlying SIRT1 signaling dysfunction in such neurotoxic process, which emphasizes RSV as a potential therapeutic dietary agent for relieving developmental fluoride neurotoxicity.


Assuntos
Fluoretos/toxicidade , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Animais , Antioxidantes/farmacologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Criança , Modelos Animais de Doenças , Feminino , Fluoretos/urina , Humanos , Testes de Inteligência , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1/genética
13.
J Hazard Mater ; 392: 122265, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32078969

RESUMO

Evidence demonstrates that 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) is able to disturb thyroid hormones (THs) homeostasis, yet the mechanisms remain unknown. We sought to investigate the effects of PBDE-47 on endoplasmic reticulum (ER) and lysosomes in thyroids. Using female Sprague-Dawley rats orally administered PBDE-47 at environmentally relevant doses (0.1, 1.0, 10 mg/kg/day) beginning ten days before breeding and ending at weaning, we showed that perinatal PBDE-47 exposure resulted in a reduction in serum THs levels and relative thyroid weight in adult female rats. These were accompanied by thyroid structural abnormalities with cell apoptosis. Mechanistically, PBDE-47 caused ER stress and activation of unfolded protein response (UPR). Moreover, PBDE-47 elicited lysosomal membrane permeabilization and the release of cathepsin. Importantly, the apoptotic cells co-localized with IRE1α, a stress sensor protein of UPR branch that mediates ER stress-induced apoptosis, or cathepsin B, a lysosomal cysteine protease that is involved in thyroglobulin, the precursor of THs, degradation and apoptosis induction. Interestingly, thyroglobulin was accumulated and predominantly presented in cells harboring compromised ER or lysosomal activity. Collectively, our findings suggest that perinatal low-dose PBDE-47 exposure hampers thyroglobulin turnover and induces thyroid cell apoptosis by triggering ER stress and lysosomal destabilization contributing to thyroid toxicity in adult female rats.


Assuntos
Poluentes Ambientais/toxicidade , Éteres Difenil Halogenados/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Glândula Tireoide/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Lisossomos/metabolismo , Troca Materno-Fetal , Gravidez , Ratos Sprague-Dawley , Tireoglobulina/metabolismo , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Hormônios Tireóideos/sangue
14.
Theranostics ; 9(15): 4375-4390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31285767

RESUMO

Apoptosis is involved in 2,2',4,4'- tetrabromodiphenyl ether (PBDE-47)-induced developmental neurotoxicity. However, little is known about the role of autophagy, especially its relationship with apoptosis underlying such neurotoxic process. Methods: Using female Sprague-Dawley rats exposed to low-dose PBDE-47 (0.1, 1.0 and 10 mg/kg/day) from pre-pregnancy until weaning of offspring to mimic human exposure, we investigated the effects of PBDE-47 on autophagy and apoptosis in relation to cognitive impairment of adult offspring rats. We also evaluated relationship between autophagy and apoptosis using neuroendocrine pheochromocytoma (PC12) cells, a widely used neuron-like cell line for neuronal development. Results: In vivo, perinatal exposure to PBDE-47 induced memory deficits in adult rats. This is accompanied by hippocampal neuronal loss partly as a result of apoptosis, as evidenced by caspase-3 activation and PARP cleavage. Further study identified that PBDE-47 triggered autophagic vesicles accumulation, increased levels of microtubule-associated protein 1 light chain 3 (LC3)-II, an essential protein for autophagosomes formation, and autophagy substrate sequestosome 1 (SQSTM1/p62), but reduced levels of autophagy-related protein (ATG) 7, a key protein for autophagosomes elongation, suggestive of autophagy impairment. These findings were further demonstrated by an in vitro model of PBDE-47-treated PC12 cells. Mechanistically, autophagy alteration is more sensitive to PBDE-47 treatment than apoptosis induction. Importantly, while stimulation of autophagy by the chemical inducer rapamycin and adenovirus-mediated Atg7 overexpression aggravated PBDE-47-induced apoptosis and cell death, inhibition of autophagy by the chemical inhibitor wortmannin and siRNA knockdown of Atg7 reversed PBDE-47-produced detrimental outcomes. Interestingly, blockage of apoptosis by caspase-3 inhibitor Ac-DEVD-CHO ameliorated PBDE-47-exerted autophagy impairment and cell death, though in combination with autophagy inhibitor did not further promote cell survival. Conclusion: Our data suggest that autophagy impairment facilitates apoptosis, which, in turn, disrupts autophagy, ultimately resulting in cell death, and that autophagy may act as a promising therapeutic target for PBDE-47-induced developmental neurotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Crescimento e Desenvolvimento/efeitos dos fármacos , Éteres Difenil Halogenados/toxicidade , Neurotoxinas/toxicidade , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Transtornos da Memória/patologia , Modelos Biológicos , Neurônios/patologia , Células PC12 , Ratos , Ratos Sprague-Dawley
15.
Anal Chim Acta ; 1061: 142-151, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-30926033

RESUMO

A single-chromophore-based photoactive agent (MB-DOPA) capable of rapid sensing of nanomolar hypochlorous acid (HOCl) and in-situ generating photocytotoxicity to cancer cells was developed using dopamine moiety as the recognition unit and methylene blue (MB) moiety as the fluorescence signaling unit. Specifically, HOCl triggered conversion of the nonfluorescent MB-DOPA to MB enabling far-red fluorescence emission (λmax ∼ 683 nm) and additional ability to photogenerate 1O2 species. Owing to the catechol nature of dopamine characterized with strong electron-donating property, MB-DOPA underwent HOCl-mediated conversion with response time of ∼20 s and a strong fluorescence OFF-to-ON contrast by a factor of more than 3000. The preliminary bioimaging results confirmed the intracellular HOCl sensing ability of MB-DOPA and the in-situ photodynamic therapy (PDT) effectiveness for inducing massive apoptosis of cancer cells. The figure of merits of MB-DOPA, including ability for sensing of nanomolar HOCl with high specificity, rapid response, practicality for intracellular fluorescence imaging, and the in-situ generation of 1O2 for killing tumor cells, is expected to enable diagnosis of early-stage oncogenesis based on the highly specific detection of abnormal HOCl levels in the transformed cells and the simultaneous treatment in biomedical applications.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Ácido Hipocloroso/análise , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Ácido Hipocloroso/farmacologia , Estrutura Molecular , Imagem Óptica , Fármacos Fotossensibilizantes/síntese química
16.
Arch Toxicol ; 93(3): 709-726, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30659323

RESUMO

Fluoride neurotoxicity is associated with mitochondrial disruption. Mitochondrial fission/fusion dynamics is crucial to maintain functional mitochondria, yet little is known about how fluoride perturbs this dynamics and whether such perturbation contributes to impaired neurodevelopment. Here in human neuroblastoma SH-SY5Y cells treated with sodium fluoride (NaF, 20, 40 and 60 mg/L), mitochondrial fission suppression exerted a central role in NaF-induced mitochondrial abnormalities and the resulting autophagy deficiency, apoptosis augmentation, and compromised neuronal survival. Mechanically, pharmacological inhibition of mitochondrial fission exacerbated NaF-induced mitochondrial defects and cell death through promoting apoptosis despite partial autophagy restoration. Conversely, genetic enhancement of mitochondrial fission alleviated NaF-produced detrimental mitochondrial and cellular outcomes by elevating autophagy and inhibiting apoptosis. Further suppressing autophagy was harmful, while blocking apoptosis was beneficial for cellular survival in this context. Consistently, using Sprague-Dawley rats developmentally exposed to NaF (10, 50, and 100 mg/L) from pre-pregnancy until 2 months of delivery to mimic human exposure, we showed that perinatal exposure to environmentally relevant levels of fluoride caused learning and memory impairments, accompanied by hippocampal mitochondrial morphological alterations manifested as fission suppression and fusion acceleration, along with defective autophagy, excessive apoptosis and neuronal loss. Intriguingly, the disturbed circulating levels of identified mitochondrial fission/fusion molecules were closely associated with intellectual loss in children under long-term environmental drinking water fluoride exposure. Collectively, our results suggest that mitochondrial fission inhibition induces mitochondrial abnormalities, triggering abnormal autophagy and apoptosis, thus contributing to neuronal death, and that the mitochondrial dynamics molecules may act as promising indicators for developmental fluoride neurotoxicity.


Assuntos
Poluentes Ambientais/toxicidade , Sistema Nervoso/efeitos dos fármacos , Fluoreto de Sódio/toxicidade , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Sobrevivência Celular , Criança , Cognição , Feminino , Fluoretos , Humanos , Masculino , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Síndromes Neurotóxicas , Gravidez , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade
17.
ACS Appl Bio Mater ; 2(7): 3068-3076, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030798

RESUMO

A new type of single-chromophore-based photoactivatable prodrug (B-Cbl-3) enabling green-light-triggered chemotherapy and simultaneous photodynamic therapy with superb therapeutic efficacy was developed by conjugating a photoactive BODIPY derivative with an antitumor chlorambucil moiety. The optimized BODIPY moiety markedly enabled high efficient photogeneration of 1O2 and fluorescence emission with distinct colors before and after photorelease of chlorambucil. The preliminary biological experiment results have verified the efficient photorelease of chlorambucil from B-Cbl-3 and the huge contrast in cytotoxicity between them, superior combined therapeutic performance based on extraordinary low doses of drug and light irradiation, and ratiometric fluorescence imaging for in situ monitoring drug release. The salient superiority of B-Cbl-3 regarding alleviating the attenuation of triggering light caused by optically turbid tissue that short-wavelength lights typically encounters has also been verified.

18.
ACS Nano ; 12(2): 1350-1358, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29338190

RESUMO

Biomimetic fluorescent nanoprobes capable of emitting near-infrared (NIR) fluorescence (λmax ≈ 720 nm) upon excitation of 800 nm light were developed. The key conjugated polymer enabled two-photon absorption and Förster resonance energy transfer (FRET) processes within the nanoprobes, which imparted the nanoprobes with ideal NIR-incoming-NIR-outgoing fluorescence features. The cancer cell membrane (CM) coating endowed these nanoprobes with perfect biocompatibility and highly specific targeting ability to homologous tumors. It was believed that CM encapsulation provided an additional protecting layer for the photoactive components residing in the core of nanoprobes for retaining their intrinsic fluorescing ability in the physiological milieu. The long-term structural integrity, excellent photostability (fluorescence decrease <10% upon 30 min illumination of 800 nm pulse laser), high NIR fluorescence quantum yield (∼20%), and long in vivo circulation time of the target nanoprobes were also confirmed. The ability of these feature-packed nanoprobes for circumventing the challenges of absorption and light scattering caused by cellular structures and tissues was definitely confirmed via in vivo and in vitro experiments. The superior performances of these nanoprobes in terms of fluorescence signaling as well as targeting specificity were verified in intravital fluorescence imaging on tumor-bearing model mice. Specifically, these nanoprobes unequivocally enabled high-resolution visualization of the fine heterogeneous architectures of intravital tumor tissue, which proclaims the great potential of this type of probe for high-contrast fluorescence detection of thick biological samples in practical applications.


Assuntos
Materiais Biomiméticos/química , Membrana Celular/química , Nanopartículas/química , Imagem Óptica , Fótons , Animais , Linhagem Celular , Células HeLa , Humanos , Raios Infravermelhos , Células MCF-7 , Camundongos
19.
ACS Appl Mater Interfaces ; 9(33): 27396-27401, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28782357

RESUMO

On the basis of the unique physicochemical properties of graphene quantum dots (GQDs), we developed a novel type of theranostic agent by loading anticancer drug doxorubicin (DOX) to GQD's surface and conjugating Cy5.5 (Cy) dye to GQD though a cathepsin D-responsive (P) peptide. Such type of agents demonstrated superior therapeutic performance both in vitro and in vivo because of the improved tissue penetration and cellular uptake. More importantly, they are capable of functioning as probes for programmed tracking the delivery and release of anticancer drug as well as drug-induced cancer cell apoptosis through GQD's, DOX's, and Cy's charateristic fluorescence, respectively.


Assuntos
Pontos Quânticos , Antineoplásicos , Doxorrubicina , Sistemas de Liberação de Medicamentos , Grafite
20.
J Fluoresc ; 27(5): 1767-1775, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28528486

RESUMO

A colorimetric fluorescent probe with fluorescence emission feature sensitive to SO2 derivatives, i.e. bisulfite (HSO3-) and sulfite (SO32-), was developed based on the HSO3-/SO32--mediated nucleophilic addition reaction of the probe that. This probe exhibited SO32- sensing ability with detection limit down to 46 nM and desired selectivity over other reference anions and redox species. The preliminary fluorescence bioimaging experiments have validated the practicability of the as-prepared probe for SO2 derivatives sensing in living cells.


Assuntos
Carbocianinas/química , Colorimetria/métodos , Corantes Fluorescentes/química , Oxazinas/química , Quinolinas/química , Sulfitos/análise , Dióxido de Enxofre/análise , Fluorescência , Humanos , Limite de Detecção , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA