Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931494

RESUMO

Due to limitations in current motion tracking technologies and increasing interest in alternative sensors for motion tracking both inside and outside the MRI system, in this study we share our preliminary experience with three alternative sensors utilizing diverse technologies and interactions with tissue to monitor motion of the body surface, respiratory-related motion of major organs, and non-respiratory motion of deep-seated organs. These consist of (1) a Pilot-Tone RF transmitter combined with deep learning algorithms for tracking liver motion, (2) a single-channel ultrasound transducer with deep learning for monitoring bladder motion, and (3) a 3D Time-of-Flight camera for observing the motion of the anterior torso surface. Additionally, we demonstrate the capability of these sensors to simultaneously capture motion data outside the MRI environment, which is particularly relevant for procedures like radiation therapy, where motion status could be related to previously characterized cyclical anatomical data. Our findings indicate that the ultrasound sensor can track motion in deep-seated organs (bladder) as well as respiratory-related motion. The Time-of-Flight camera offers ease of interpretation and performs well in detecting surface motion (respiration). The Pilot-Tone demonstrates efficacy in tracking bulk respiratory motion and motion of major organs (liver). Simultaneous use of all three sensors could provide complementary motion information outside the MRI bore, providing potential value for motion tracking during position-sensitive treatments such as radiation therapy.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Respiração , Fígado/diagnóstico por imagem , Fígado/fisiologia , Movimento/fisiologia , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/fisiologia , Algoritmos , Aprendizado Profundo , Movimento (Física) , Ultrassonografia/métodos
2.
Sci Data ; 11(1): 404, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643291

RESUMO

Magnetic resonance imaging (MRI) has experienced remarkable advancements in the integration of artificial intelligence (AI) for image acquisition and reconstruction. The availability of raw k-space data is crucial for training AI models in such tasks, but public MRI datasets are mostly restricted to DICOM images only. To address this limitation, the fastMRI initiative released brain and knee k-space datasets, which have since seen vigorous use. In May 2023, fastMRI was expanded to include biparametric (T2- and diffusion-weighted) prostate MRI data from a clinical population. Biparametric MRI plays a vital role in the diagnosis and management of prostate cancer. Advances in imaging methods, such as reconstructing under-sampled data from accelerated acquisitions, can improve cost-effectiveness and accessibility of prostate MRI. Raw k-space data, reconstructed images and slice, volume and exam level annotations for likelihood of prostate cancer are provided in this dataset for 47468 slices corresponding to 1560 volumes from 312 patients. This dataset facilitates AI and algorithm development for prostate image reconstruction, with the ultimate goal of enhancing prostate cancer diagnosis.


Assuntos
Imageamento por Ressonância Magnética , Próstata , Neoplasias da Próstata , Humanos , Masculino , Inteligência Artificial , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia
3.
ArXiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131871

RESUMO

The fastMRI brain and knee dataset has enabled significant advances in exploring reconstruction methods for improving speed and image quality for Magnetic Resonance Imaging (MRI) via novel, clinically relevant reconstruction approaches. In this study, we describe the April 2023 expansion of the fastMRI dataset to include biparametric prostate MRI data acquired on a clinical population. The dataset consists of raw k-space and reconstructed images for T2-weighted and diffusion-weighted sequences along with slice-level labels that indicate the presence and grade of prostate cancer. As has been the case with fastMRI, increasing accessibility to raw prostate MRI data will further facilitate research in MR image reconstruction and evaluation with the larger goal of improving the utility of MRI for prostate cancer detection and evaluation. The dataset is available at https://fastmri.med.nyu.edu.

4.
J Magn Reson Imaging ; 52(4): 1163-1172, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32293775

RESUMO

BACKGROUND: Accurate interpretation of hip MRI is time-intensive and difficult, prone to inter- and intrareviewer variability, and lacks a universally accepted grading scale to evaluate morphological abnormalities. PURPOSE: To 1) develop and evaluate a deep-learning-based model for binary classification of hip osteoarthritis (OA) morphological abnormalities on MR images, and 2) develop an artificial intelligence (AI)-based assist tool to find if using the model predictions improves interreader agreement in hip grading. STUDY TYPE: Retrospective study aimed to evaluate a technical development. POPULATION: A total of 764 MRI volumes (364 patients) obtained from two studies (242 patients from LASEM [FORCe] and 122 patients from UCSF), split into a 65-25-10% train, validation, test set for network training. FIELD STRENGTH/SEQUENCE: 3T MRI, 2D T2 FSE, PD SPAIR. ASSESSMENT: Automatic binary classification of cartilage lesions, bone marrow edema-like lesions, and subchondral cyst-like lesions using the MRNet, interreader agreement before and after using network predictions. STATISTICAL TESTS: Receiver operating characteristic (ROC) curve, area under curve (AUC), specificity and sensitivity, and balanced accuracy. RESULTS: For cartilage lesions, bone marrow edema-like lesions and subchondral cyst-like lesions the AUCs were: 0.80 (95% confidence interval [CI] 0.65, 0.95), 0.84 (95% CI 0.67, 1.00), and 0.77 (95% CI 0.66, 0.85), respectively. The sensitivity and specificity of the radiologist for binary classification were: 0.79 (95% CI 0.65, 0.93) and 0.80 (95% CI 0.59, 1.02), 0.40 (95% CI -0.02, 0.83) and 0.72 (95% CI 0.59, 0.86), 0.75 (95% CI 0.45, 1.05) and 0.88 (95% CI 0.77, 0.98). The interreader balanced accuracy increased from 53%, 71% and 56% to 60%, 73% and 68% after using the network predictions and saliency maps. DATA CONCLUSION: We have shown that a deep-learning approach achieved high performance in clinical classification tasks on hip MR images, and that using the predictions from the deep-learning model improved the interreader agreement in all pathologies. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 1 J. Magn. Reson. Imaging 2020;52:1163-1172.


Assuntos
Inteligência Artificial , Interpretação de Imagem Assistida por Computador , Computadores , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Estudos Retrospectivos
5.
J Magn Reson Imaging ; 52(5): 1462-1474, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32207870

RESUMO

BACKGROUND: Bone-cartilage interactions have been implicated in causing osteoarthritis (OA). PURPOSE: To use [18 F]-NaF PET-MRI to 1) develop automatic image processing code in MatLab to create a model of bone-cartilage interactions and 2) find associations of bone-cartilage interactions with known manifestations of OA. STUDY TYPE: Prospective study aimed to evaluate a data analysis method. POPULATION: Twenty-nine patients with knee pain or joint stiffness. FIELD STRENGTH/SEQUENCE: 3T MRI (GE), 3D CUBE FSE, 3D combined T1 ρ/T2 MAPSS, [18F]-sodium fluoride, SIGNA TOF (OSEM). ASSESSMENT: Correlation between MRI (cartilage) and PET (bone) quantitative parameters, bone-cartilage interactions model described by modes of variation as derived by principal component analysis (PCA), WORMS scoring on cartilage lesions, bone marrow abnormalities, subchondral cysts. STATISTICAL TESTS: Linear regression, Pearson correlation. RESULTS: Mode 1 was a positive predictor of the bone abnormality score (P = 0.0003, P = 0.001, P = 0.0007) and the cartilage lesion score (P = 0.03, P = 0.01, P = 0.02) in the femur, tibia, and patella, respectively. For the cartilage lesion scores, mode 5 was the most important positive predictor in the femur (P = 3.9E-06), and mode 2 were predictors, significant negative predictor in the tibia (P = 0.007). In the patella, mode 1 was a significant positive predictor of the bone abnormality score (P = 0.0007). DATA CONCLUSION: By successfully building an automatic code to create a bone-cartilage interface, we were able to observe dynamic relationships between biochemical changes in the cartilage accompanied with bone remodeling, extended to the whole knee joint instead of simple colocalized observations, shedding light on the interactions that occur between bone and cartilage in OA. Evidence Level: 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;52:1462-1474.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Cartilagem , Cartilagem Articular/diagnóstico por imagem , Humanos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Osteoartrite do Joelho/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Análise de Componente Principal , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA