Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37988172

RESUMO

BACKGROUNDSystemic administration of adeno-associated virus (AAV) can trigger life-threatening inflammatory responses, including thrombotic microangiopathy (TMA), acute kidney injury due to atypical hemolytic uremic syndrome-like complement activation, immune-mediated myocardial inflammation, and hepatic toxicity.METHODSWe describe the kinetics of immune activation following systemic AAV serotype 9 (AAV9) administration in 38 individuals following 2 distinct prophylactic immunomodulation regimens. Group 1 received corticosteroids and Group 2 received rituximab plus sirolimus in addition to steroids to prevent anti-AAV antibody formation.RESULTSGroup 1 participants had a rapid increase in immunoglobulin M (IgM) and IgG. Increase in D-dimer, decline in platelet count, and complement activation are indicative of TMA. All Group 1 participants demonstrated activation of both classical and alternative complement pathways, as indicated by depleted C4 and elevated soluble C5b-9, Ba, and Bb antigens. Group 2 patients did not have a significant change in IgM or IgG and had minimal complement activation.CONCLUSIONSThis study demonstrates that TMA in the setting of AAV gene therapy is antibody dependent (classical pathway) and amplified by the alternative complement pathway. Critical time points and interventions are identified to allow for management of immune-mediated events that impact the safety and efficacy of systemic gene therapy.


Assuntos
Dependovirus , Microangiopatias Trombóticas , Humanos , Dependovirus/genética , Microangiopatias Trombóticas/terapia , Imunoglobulina M , Imunoglobulina G
2.
EBioMedicine ; 92: 104627, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37267847

RESUMO

BACKGROUND: GM1 gangliosidosis is a rare, fatal, neurodegenerative disease caused by mutations in the GLB1 gene and deficiency in ß-galactosidase. Delay of symptom onset and increase in lifespan in a GM1 gangliosidosis cat model after adeno-associated viral (AAV) gene therapy treatment provide the basis for AAV gene therapy trials. The availability of validated biomarkers would greatly improve assessment of therapeutic efficacy. METHODS: The liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to screen oligosaccharides as potential biomarkers for GM1 gangliosidosis. The structures of pentasaccharide biomarkers were determined with mass spectrometry, as well as chemical and enzymatic degradations. Comparison of LC-MS/MS data of endogenous and synthetic compounds confirmed the identification. The study samples were analyzed with fully validated LC-MS/MS methods. FINDINGS: We identified two pentasaccharide biomarkers, H3N2a and H3N2b, that were elevated more than 18-fold in patient plasma, cerebrospinal fluid (CSF), and urine. Only H3N2b was detectable in the cat model, and it was negatively correlated with ß-galactosidase activity. Following intravenous (IV) AAV9 gene therapy treatment, reduction of H3N2b was observed in central nervous system, urine, plasma, and CSF samples from the cat model and in urine, plasma, and CSF samples from a patient. Reduction of H3N2b accurately reflected normalization of neuropathology in the cat model and improvement of clinical outcomes in the patient. INTERPRETATIONS: These results demonstrate that H3N2b is a useful pharmacodynamic biomarker to evaluate the efficacy of gene therapy for GM1 gangliosidosis. H3N2b will facilitate the translation of gene therapy from animal models to patients. FUNDING: This work was supported by grants U01NS114156, R01HD060576, ZIAHG200409, and P30 DK020579 from the National Institutes of Health (NIH) and a grant from National Tay-Sachs and Allied Diseases Association Inc.


Assuntos
Gangliosidose GM1 , Doenças Neurodegenerativas , Animais , Gangliosidose GM1/genética , Gangliosidose GM1/terapia , Gangliosidose GM1/patologia , Doenças Neurodegenerativas/terapia , Cromatografia Líquida , Espectrometria de Massas em Tandem , beta-Galactosidase/genética , beta-Galactosidase/química , beta-Galactosidase/uso terapêutico , Biomarcadores/líquido cefalorraquidiano , Terapia Genética
3.
NPJ Genom Med ; 8(1): 4, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765070

RESUMO

Autophagy regulates the degradation of damaged organelles and protein aggregates, and is critical for neuronal development, homeostasis, and maintenance, yet few neurodevelopmental disorders have been associated with pathogenic variants in genes encoding autophagy-related proteins. We report three individuals from two unrelated families with a neurodevelopmental disorder characterized by speech and motor impairment, and similar facial characteristics. Rare, conserved, bi-allelic variants were identified in ATG4D, encoding one of four ATG4 cysteine proteases important for autophagosome biogenesis, a hallmark of autophagy. Autophagosome biogenesis and induction of autophagy were intact in cells from affected individuals. However, studies evaluating the predominant substrate of ATG4D, GABARAPL1, demonstrated that three of the four ATG4D patient variants functionally impair ATG4D activity. GABARAPL1 is cleaved or "primed" by ATG4D and an in vitro GABARAPL1 priming assay revealed decreased priming activity for three of the four ATG4D variants. Furthermore, a rescue experiment performed in an ATG4 tetra knockout cell line, in which all four ATG4 isoforms were knocked out by gene editing, showed decreased GABARAPL1 priming activity for the two ATG4D missense variants located in the cysteine protease domain required for priming, suggesting that these variants impair the function of ATG4D. The clinical, bioinformatic, and functional data suggest that bi-allelic loss-of-function variants in ATG4D contribute to the pathogenesis of this syndromic neurodevelopmental disorder.

4.
J Inherit Metab Dis ; 45(5): 907-918, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35490291

RESUMO

Living with an undiagnosed medical condition places a tremendous burden on patients, their families, and their healthcare providers. The Undiagnosed Diseases Program (UDP) was established at the National Institutes of Health (NIH) in 2008 with the primary goals of providing a diagnosis for patients with mysterious conditions and advancing medical knowledge about rare and common diseases. The program reviews applications from referring clinicians for cases that are considered undiagnosed despite a thorough evaluation. Those that are accepted receive clinical evaluations involving deep phenotyping and genetic testing that includes exome and genomic sequencing. Selected candidate gene variants are evaluated by collaborators using functional assays. Since its inception, the UDP has received more than 4500 applications and has completed evaluations on nearly 1300 individuals. Here we present six cases that exemplify the discovery of novel disease mechanisms, the importance of deep phenotyping for rare diseases, and how genetic diagnoses have led to appropriate treatment. The creation of the Undiagnosed Diseases Network (UDN) in 2014 has substantially increased the number of patients evaluated and allowed for greater opportunities for data sharing. Expansion to the Undiagnosed Diseases Network International (UDNI) has the possibility to extend this reach even farther. Together, networks of undiagnosed diseases programs are powerful tools to advance our knowledge of pathophysiology, accelerate accurate diagnoses, and improve patient care for patients with rare conditions.


Assuntos
Doenças não Diagnosticadas , Exoma , Humanos , National Institutes of Health (U.S.) , Doenças Raras/diagnóstico , Doenças Raras/genética , Estados Unidos , Difosfato de Uridina
5.
Nat Med ; 28(2): 251-259, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145305

RESUMO

Tay-Sachs disease (TSD) is an inherited neurological disorder caused by deficiency of hexosaminidase A (HexA). Here, we describe an adeno-associated virus (AAV) gene therapy expanded-access trial in two patients with infantile TSD (IND 18225) with safety as the primary endpoint and no secondary endpoints. Patient TSD-001 was treated at 30 months with an equimolar mix of AAVrh8-HEXA and AAVrh8-HEXB administered intrathecally (i.t.), with 75% of the total dose (1 × 1014 vector genomes (vg)) in the cisterna magna and 25% at the thoracolumbar junction. Patient TSD-002 was treated at 7 months by combined bilateral thalamic (1.5 × 1012 vg per thalamus) and i.t. infusion (3.9 × 1013 vg). Both patients were immunosuppressed. Injection procedures were well tolerated, with no vector-related adverse events (AEs) to date. Cerebrospinal fluid (CSF) HexA activity increased from baseline and remained stable in both patients. TSD-002 showed disease stabilization by 3 months after injection with ongoing myelination, a temporary deviation from the natural history of infantile TSD, but disease progression was evident at 6 months after treatment. TSD-001 remains seizure-free at 5 years of age on the same anticonvulsant therapy as before therapy. TSD-002 developed anticonvulsant-responsive seizures at 2 years of age. This study provides early safety and proof-of-concept data in humans for treatment of patients with TSD by AAV gene therapy.


Assuntos
Doença de Tay-Sachs , Anticonvulsivantes , Dependovirus/genética , Terapia Genética , Humanos , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/terapia
6.
Mol Genet Metab ; 135(3): 221-229, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35144859

RESUMO

Protein translation is a highly regulated process involving the interaction of numerous genes on every component of the protein translation machinery. Upregulated protein translation is a hallmark of cancer and is implicated in autism spectrum disorder, but the risks of developing each disease do not appear to be correlated with one another. In this study we identified two siblings from the NIH Undiagnosed Diseases Program with loss of function variants in PUS7, a gene previously implicated in the regulation of total protein translation. These patients exhibited a neurodevelopmental phenotype including autism spectrum disorder in the proband. Both patients also had features of Lesch-Nyhan syndrome, including hyperuricemia and self-injurious behavior, but without pathogenic variants in HPRT1. Patient fibroblasts demonstrated upregulation of protein synthesis, including elevated MYC protein, but did not exhibit increased rates of cell proliferation. Interestingly, the dysregulation of protein translation also resulted in mildly decreased levels of HPRT1 protein suggesting an association between dysregulated protein translation and the LNS-like phenotypic findings. These findings strengthen the correlation between neurodevelopmental disease, particularly autism spectrum disorders, and the rate of protein translation.


Assuntos
Transtorno do Espectro Autista , Transferases Intramoleculares/metabolismo , Síndrome de Lesch-Nyhan , Transtorno do Espectro Autista/genética , Humanos , Hipoxantina Fosforribosiltransferase/genética , Síndrome de Lesch-Nyhan/diagnóstico , Síndrome de Lesch-Nyhan/genética , Fenótipo , Biossíntese de Proteínas , Proteínas/genética
7.
PLoS Genet ; 16(6): e1008841, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32544203

RESUMO

Hypomyelination, a neurological condition characterized by decreased production of myelin sheets by glial cells, often has no known etiology. Elucidating the genetic causes of hypomyelination provides a better understanding of myelination, as well as means to diagnose, council, and treat patients. Here, we present evidence that YIPPEE LIKE 3 (YPEL3), a gene whose developmental role was previously unknown, is required for central and peripheral glial cell development. We identified a child with a constellation of clinical features including cerebral hypomyelination, abnormal peripheral nerve conduction, hypotonia, areflexia, and hypertrophic peripheral nerves. Exome and genome sequencing revealed a de novo mutation that creates a frameshift in the open reading frame of YPEL3, leading to an early stop codon. We used zebrafish as a model system to validate that YPEL3 mutations are causative of neuropathy. We found that ypel3 is expressed in the zebrafish central and peripheral nervous system. Using CRISPR/Cas9 technology, we created zebrafish mutants carrying a genomic lesion similar to that of the patient. Our analysis revealed that Ypel3 is required for development of oligodendrocyte precursor cells, timely exit of the perineurial glial precursors from the central nervous system (CNS), formation of the perineurium, and Schwann cell maturation. Consistent with these observations, zebrafish ypel3 mutants have metabolomic signatures characteristic of oligodendrocyte and Schwann cell differentiation defects, show decreased levels of Myelin basic protein in the central and peripheral nervous system, and develop defasciculated peripheral nerves. Locomotion defects were observed in adult zebrafish ypel3 mutants. These studies demonstrate that Ypel3 is a novel gene required for perineurial cell development and glial myelination.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Bainha de Mielina/patologia , Neurogênese/genética , Proteínas Supressoras de Tumor/genética , Animais , Plexo Braquial/diagnóstico por imagem , Criança , Análise Mutacional de DNA , Modelos Animais de Doenças , Embrião não Mamífero , Feminino , Mutação da Fase de Leitura , Substância Cinzenta/diagnóstico por imagem , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico por imagem , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Humanos , Imageamento por Ressonância Magnética , Neuroglia/patologia , Oligodendroglia , Nervo Isquiático/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Sequenciamento do Exoma , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
8.
Dis Model Mech ; 13(5)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32152089

RESUMO

A critical barrier in the treatment of endosomal and lysosomal diseases is the lack of understanding of the in vivo functions of the putative causative genes. We addressed this by investigating a key pair of endocytic adaptor proteins, PH domain-containing endocytic trafficking adaptor 1 and 2 (PHETA1/2; also known as FAM109A/B, Ses1/2, IPIP27A/B), which interact with the protein product of OCRL, the causative gene for Lowe syndrome. Here, we conducted the first study of PHETA1/2 in vivo, utilizing the zebrafish system. We found that impairment of both zebrafish orthologs, pheta1 and pheta2, disrupted endocytosis and ciliogenesis in renal tissues. In addition, pheta1/2 mutant animals exhibited reduced jaw size and delayed chondrocyte differentiation, indicating a role in craniofacial development. Deficiency of pheta1/2 resulted in dysregulation of cathepsin K, which led to an increased abundance of type II collagen in craniofacial cartilages, a marker of immature cartilage extracellular matrix. Cathepsin K inhibition rescued the craniofacial phenotypes in the pheta1/2 double mutants. The abnormal renal and craniofacial phenotypes in the pheta1/2 mutant animals were consistent with the clinical presentation of a patient with a de novo arginine (R) to cysteine (C) variant (R6C) of PHETA1. Expressing the patient-specific variant in zebrafish exacerbated craniofacial deficits, suggesting that the R6C allele acts in a dominant-negative manner. Together, these results provide insights into the in vivo roles of PHETA1/2 and suggest that the R6C variant is contributory to the pathogenesis of disease in the patient.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Endocitose , Face/embriologia , Rim/embriologia , Crânio/embriologia , Proteínas de Peixe-Zebra/deficiência , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas/genética , Catepsina K/metabolismo , Diferenciação Celular , Condrócitos/patologia , Cílios/patologia , Colágeno Tipo II/metabolismo , Genes Dominantes , Células HeLa , Humanos , Morfogênese , Atividade Motora , Mutação/genética , Pronefro/patologia , Doenças não Diagnosticadas/diagnóstico por imagem , Doenças não Diagnosticadas/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
9.
Bone ; 131: 115142, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31704340

RESUMO

GM1 gangliosidosis is a lysosomal storage disorder caused by mutations in GLB1 encoding a lysosomal ß-galactosidase. This disease is a continuum from the severe infantile form with rapid neurological decline to the chronic adult form, which is not life-limiting. The intermediate or type 2 form can be further classified into late infantile and juvenile forms. The frequency and severity of skeletal outcomes in late infantile and juvenile patients have not been characterized. Our goals are to describe the radiological skeletal abnormalities, bone mineral density (BMD), and frequency of fractures in patients with intermediate GM1 gangliosidosis. We evaluated 13 late infantile and 21 juvenile patients as part of an ongoing natural history study. Average time from onset of symptoms to diagnosis was 1.9 and 6.3 years for late infantile and juvenile patients, respectively. All late infantile patients had odontoid hypoplasia and pear-shaped vertebral bodies, the frequency of which was significantly different than in patients with juvenile disease (none and 14%, respectively). Juvenile patients had irregular endplates of the vertebral bodies (15/21), central indentation of endplates (10/21), and squared and flat vertebral bodies (10/21); all allowed radiographic differentiation from late infantile patients. Lumbar spine, femoral neck, and total hip BMD were significantly decreased (-2.1, -2.2, and -1.8 Z-scores respectively). Lumbar spine BMD peaked at 19 years, while distal forearm BMD peaked at 30 years. Despite low BMD, no patients exhibited fractures. We have demonstrated that all late infantile patients have some degree of odontoid hypoplasia suggesting the need for cervical spine evaluation particularly prior to anesthesia, whereas juvenile patients had variable skeletal involvement often affecting activities of daily living. Type 2 GM1 gangliosidosis patients have skeletal abnormalities that are both an early indication of their diagnosis, and require monitoring and management to ensure the highest possible quality of life.


Assuntos
Gangliosidose GM1 , Atividades Cotidianas , Adulto , Gangliosidose GM1/diagnóstico por imagem , Gangliosidose GM1/genética , Humanos , Mutação , Fenótipo , Qualidade de Vida
10.
Mol Genet Metab Rep ; 21: 100513, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31534909

RESUMO

GM1 gangliosidosis is an autosomal recessive neurodegenerative disorder caused by the deficiency of lysosomal ß-galactosidase (ß-gal) and resulting in accumulation of GM1 ganglioside. The disease spectrum ranges from infantile to late onset and is uniformly fatal, with no effective therapy currently available. Although animal models have been useful for understanding disease pathogenesis and exploring therapeutic targets, no relevant human central nervous system (CNS) model system has been available to study its early pathogenic events or test therapies. To develop a model of human GM1 gangliosidosis in the CNS, we employed CRISPR/Cas9 genome editing to target GLB1 exons 2 and 6, common sites for mutations in patients, to create isogenic induced pluripotent stem (iPS) cell lines with lysosomal ß-gal deficiency. We screened for clones with <5% of parental cell line ß-gal enzyme activity and confirmed GLB1 knockout clones using DNA sequencing. We then generated GLB1 knockout cerebral organoids from one of these GLB1 knockout iPS cell clones. Analysis of GLB1 knockout organoids in culture revealed progressive accumulation of GM1 ganglioside. GLB1 knockout organoids microinjected with AAV9-GLB1 vector showed a significant increase in ß-gal activity and a significant reduction in GM1 ganglioside content compared with AAV9-GFP-injected organoids, demonstrating the efficacy of an AAV9 gene therapy-based approach in GM1 gangliosidosis. This proof-of-concept in a human cerebral organoid model completes the pre-clinical studies to advance to clinical trials using the AAV9-GLB1 vector.

11.
Hum Mutat ; 40(5): 532-538, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30740830

RESUMO

Syndromic sensorineural hearing loss is multigenic and associated with malformations of the ear and other organ systems. Herein we describe a child admitted to the NIH Undiagnosed Diseases Program with global developmental delay, sensorineural hearing loss, gastrointestinal abnormalities, and absent salivation. Next-generation sequencing revealed a uniparental isodisomy in chromosome 5, and a 22 kb homozygous deletion in SLC12A2, which encodes for sodium, potassium, and chloride transporter in the basolateral membrane of secretory epithelia. Functional studies using patient-derived fibroblasts showed truncated SLC12A2 transcripts and markedly reduced protein abundance when compared with control. Loss of Slc12a2 in mice has been shown to lead to deafness, abnormal neuronal growth and migration, severe gastrointestinal abnormalities, and absent salivation. Together with the described phenotype of the Slc12a2-knockout mouse model, our results suggest that the absence of functional SLC12A2 causes a new genetic syndrome and is crucial for the development of auditory, neurologic, and gastrointestinal tissues.


Assuntos
Predisposição Genética para Doença , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Homozigoto , Deleção de Sequência , Membro 2 da Família 12 de Carreador de Soluto/genética , Pré-Escolar , Fácies , Estudos de Associação Genética , Loci Gênicos , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Síndrome , Tomografia Computadorizada por Raios X
12.
Hum Mutat ; 40(1): 42-47, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30362252

RESUMO

The genetic etiologies of many rare disorders, including early infantile epileptic encephalopathies, are largely undiagnosed. A 6-year-old girl was admitted to the National Institutes of Health Undiagnosed Diseases Program with profound intellectual disability, infantile-onset seizures, chronic respiratory failure, facial dysmorphisms, skeletal abnormalities, and atrial septum defect. A large region of homozygosity was discovered on chromosome 16, spanning 16q22.1-16q24.3' caused by uniparental disomy (UPD) that included a maternally inherited homozygous microdeletion covering exon 6 of WWOX (NM_016373.3). mRNA expression analysis revealed that the deletion led to nonsense-mediated decay of the NM_016373.3 transcript; the exon 6 of an alternative transcript (NM_130791.3), lacking the short-chain dehydrogenase, was utilized. The microdeletion in WWOX explains the seizures and intellectual disability, while pathogenic variants in another gene, HSPG2, are likely responsible for the patient's skeletal abnormalities. This report describes a rare autosomal recessive disorder with multiple genetic etiologies, one of which involves UPD.


Assuntos
Deleção Cromossômica , Espasmos Infantis/genética , Proteínas Supressoras de Tumor/genética , Dissomia Uniparental/genética , Oxidorredutase com Domínios WW/genética , Adulto , Sequência de Bases , Criança , Cromossomos Humanos Par 16/genética , Feminino , Proteoglicanas de Heparan Sulfato/genética , Homozigoto , Humanos , Lactente , Polimorfismo de Nucleotídeo Único/genética
13.
Am J Hum Genet ; 103(4): 553-567, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290151

RESUMO

The conserved oligomeric Golgi (COG) complex is involved in intracellular vesicular transport, and is composed of eight subunits distributed in two lobes, lobe A (COG1-4) and lobe B (COG5-8). We describe fourteen individuals with Saul-Wilson syndrome, a rare form of primordial dwarfism with characteristic facial and radiographic features. All affected subjects harbored heterozygous de novo variants in COG4, giving rise to the same recurrent amino acid substitution (p.Gly516Arg). Affected individuals' fibroblasts, whose COG4 mRNA and protein were not decreased, exhibited delayed anterograde vesicular trafficking from the ER to the Golgi and accelerated retrograde vesicular recycling from the Golgi to the ER. This altered steady-state equilibrium led to a decrease in Golgi volume, as well as morphologic abnormalities with collapse of the Golgi stacks. Despite these abnormalities of the Golgi apparatus, protein glycosylation in sera and fibroblasts from affected subjects was not notably altered, but decorin, a proteoglycan secreted into the extracellular matrix, showed altered Golgi-dependent glycosylation. In summary, we define a specific heterozygous COG4 substitution as the molecular basis of Saul-Wilson syndrome, a rare skeletal dysplasia distinct from biallelic COG4-CDG.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Transporte Proteico/genética , Proteoglicanas/genética , Proteínas de Transporte Vesicular/genética , Adulto , Substituição de Aminoácidos/genética , Animais , Animais Geneticamente Modificados/genética , Linhagem Celular , Criança , Pré-Escolar , Retículo Endoplasmático/genética , Matriz Extracelular/genética , Feminino , Fibroblastos/patologia , Glicosilação , Complexo de Golgi/genética , Heterozigoto , Humanos , Lactente , Masculino , Peixe-Zebra
14.
Nat Rev Dis Primers ; 4(1): 27, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275469

RESUMO

Lysosomal storage diseases (LSDs) are a group of over 70 diseases that are characterized by lysosomal dysfunction, most of which are inherited as autosomal recessive traits. These disorders are individually rare but collectively affect 1 in 5,000 live births. LSDs typically present in infancy and childhood, although adult-onset forms also occur. Most LSDs have a progressive neurodegenerative clinical course, although symptoms in other organ systems are frequent. LSD-associated genes encode different lysosomal proteins, including lysosomal enzymes and lysosomal membrane proteins. The lysosome is the key cellular hub for macromolecule catabolism, recycling and signalling, and defects that impair any of these functions cause the accumulation of undigested or partially digested macromolecules in lysosomes (that is, 'storage') or impair the transport of molecules, which can result in cellular damage. Consequently, the cellular pathogenesis of these diseases is complex and is currently incompletely understood. Several LSDs can be treated with approved, disease-specific therapies that are mostly based on enzyme replacement. However, small-molecule therapies, including substrate reduction and chaperone therapies, have also been developed and are approved for some LSDs, whereas gene therapy and genome editing are at advanced preclinical stages and, for a few disorders, have already progressed to the clinic.


Assuntos
Doenças por Armazenamento dos Lisossomos/genética , Doença de Fabry/epidemiologia , Doença de Fabry/genética , Doença de Gaucher/epidemiologia , Doença de Gaucher/genética , Doença de Depósito de Glicogênio Tipo II/epidemiologia , Doença de Depósito de Glicogênio Tipo II/genética , Humanos , Leucodistrofia Metacromática/epidemiologia , Leucodistrofia Metacromática/genética , Doenças por Armazenamento dos Lisossomos/epidemiologia , Proteínas/análise
15.
Am J Hum Genet ; 103(1): 154-162, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29961569

RESUMO

TRAF7 is a multi-functional protein involved in diverse signaling pathways and cellular processes. The phenotypic consequence of germline TRAF7 variants remains unclear. Here we report missense variants in TRAF7 in seven unrelated individuals referred for clinical exome sequencing. The seven individuals share substantial phenotypic overlap, with developmental delay, congenital heart defects, limb and digital anomalies, and dysmorphic features emerging as key unifying features. The identified variants are de novo in six individuals and comprise four distinct missense changes, including a c.1964G>A (p.Arg655Gln) variant that is recurrent in four individuals. These variants affect evolutionarily conserved amino acids and are located in key functional domains. Gene-specific mutation rate analysis showed that the occurrence of the de novo variants in TRAF7 (p = 2.6 × 10-3) and the recurrent de novo c.1964G>A (p.Arg655Gln) variant (p = 1.9 × 10-8) in our exome cohort was unlikely to have occurred by chance. In vitro analyses of the observed TRAF7 mutations showed reduced ERK1/2 phosphorylation. Our findings suggest that missense mutations in TRAF7 are associated with a multisystem disorder and provide evidence of a role for TRAF7 in human development.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Adulto , Aminoácidos/genética , Criança , Pré-Escolar , Exoma/genética , Feminino , Cardiopatias Congênitas/genética , Humanos , Lactente , Recém-Nascido , Sistema de Sinalização das MAP Quinases/genética , Masculino , Anormalidades Musculoesqueléticas/genética , Fenótipo
16.
Mol Ther ; 25(4): 892-903, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28236574

RESUMO

GM1 gangliosidosis is a fatal neurodegenerative disease that affects individuals of all ages. Favorable outcomes using adeno-associated viral (AAV) gene therapy in GM1 mice and cats have prompted consideration of human clinical trials, yet there remains a paucity of objective biomarkers to track disease status. We developed a panel of biomarkers using blood, urine, cerebrospinal fluid (CSF), electrodiagnostics, 7 T MRI, and magnetic resonance spectroscopy in GM1 cats-either untreated or AAV treated for more than 5 years-and compared them to markers in human GM1 patients where possible. Significant alterations were noted in CSF and blood of GM1 humans and cats, with partial or full normalization after gene therapy in cats. Gene therapy improved the rhythmic slowing of electroencephalograms (EEGs) in GM1 cats, a phenomenon present also in GM1 patients, but nonetheless the epileptiform activity persisted. After gene therapy, MR-based analyses revealed remarkable preservation of brain architecture and correction of brain metabolites associated with microgliosis, neuroaxonal loss, and demyelination. Therapeutic benefit of AAV gene therapy in GM1 cats, many of which maintain near-normal function >5 years post-treatment, supports the strong consideration of human clinical trials, for which the biomarkers described herein will be essential for outcome assessment.


Assuntos
Biomarcadores , Gangliosidose GM1/genética , Gangliosidose GM1/metabolismo , Terapia Genética , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/urina , Gatos , Dependovirus/classificação , Dependovirus/genética , Modelos Animais de Doenças , Eletroencefalografia , Gangliosidose GM1/mortalidade , Gangliosidose GM1/terapia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Hipocalcemia/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Resultado do Tratamento
17.
J Med Genet ; 54(2): 84-86, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27389779

RESUMO

BACKGROUND: The causes of intellectual disability (ID) are diverse and de novo mutations are increasingly recognised to account for a significant proportion of ID. METHODS AND RESULTS: In this study, we performed whole exome sequencing on a large cohort of patients with ID or neurodevelopmental delay and identified four novel de novo predicted deleterious missense variants in HECW2 in six probands with ID/developmental delay and hypotonia. Other common features include seizures, strabismus, nystagmus, cortical visual impairment and dysmorphic facial features. HECW2 is an ubiquitin ligase that stabilises p73, a crucial mediator of neurodevelopment and neurogenesis. CONCLUSION: This study implicates pathogenic genetic variants in HECW2 as potential causes of neurodevelopmental disorders in humans.


Assuntos
Deficiência Intelectual/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , Proteína Tumoral p73/genética , Ubiquitina-Proteína Ligases/genética , Criança , Pré-Escolar , Exoma/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/patologia , Masculino , Hipotonia Muscular/patologia , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/patologia
18.
Am J Med Genet A ; 167(6): 1374-80, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25845469

RESUMO

Intellectual disability (ID) is a heterogeneous condition arising from a variety of environmental and genetic factors. Among these causes are defects in transcriptional regulators. Herein, we report on two brothers in a nonconsanguineous family with novel compound heterozygous, disease-segregating mutations (NM_015979.3: [3656A > G];[4006C > T], NP_057063.2: [H1219R];[R1336X]) in MED23. This gene encodes a subunit of the Mediator complex that modulates the expression of RNA polymerase II-dependent genes. These brothers, who had profound ID, spasticity, congenital heart disease, brain abnormalities, and atypical electroencephalography, represent the first case of MED23-associated ID in a non-consanguineous family. They also expand upon the clinical features previously reported for mutations in this gene.


Assuntos
Anormalidades Múltiplas/genética , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Complexo Mediador/genética , Mutação de Sentido Incorreto , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Criança , Pré-Escolar , Exoma , Expressão Gênica , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/patologia , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Irmãos
19.
Hum Mol Genet ; 23(2): 397-407, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24006476

RESUMO

Pathologically elevated serum levels of fibroblast growth factor-23 (FGF23), a bone-derived hormone that regulates phosphorus homeostasis, result in renal phosphate wasting and lead to rickets or osteomalacia. Rarely, elevated serum FGF23 levels are found in association with mosaic cutaneous disorders that affect large proportions of the skin and appear in patterns corresponding to the migration of ectodermal progenitors. The cause and source of elevated serum FGF23 is unknown. In those conditions, such as epidermal and large congenital melanocytic nevi, skin lesions are variably associated with other abnormalities in the eye, brain and vasculature. The wide distribution of involved tissues and the appearance of multiple segmental skin and bone lesions suggest that these conditions result from early embryonic somatic mutations. We report five such cases with elevated serum FGF23 and bone lesions, four with large epidermal nevi and one with a giant congenital melanocytic nevus. Exome sequencing of blood and affected skin tissue identified somatic activating mutations of HRAS or NRAS in each case without recurrent secondary mutation, and we further found that the same mutation is present in dysplastic bone. Our finding of somatic activating RAS mutation in bone, the endogenous source of FGF23, provides the first evidence that elevated serum FGF23 levels, hypophosphatemia and osteomalacia are associated with pathologic Ras activation and may provide insight in the heretofore limited understanding of the regulation of FGF23.


Assuntos
Fatores de Crescimento de Fibroblastos/sangue , GTP Fosfo-Hidrolases/genética , Hipofosfatemia/genética , Proteínas de Membrana/genética , Nevo Pigmentado/genética , Osteomalacia/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Cutâneas/genética , Adolescente , Criança , Exoma , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hipofosfatemia/sangue , Hipofosfatemia/patologia , Masculino , Mutação , Nevo , Nevo Pigmentado/sangue , Nevo Pigmentado/patologia , Osteomalacia/sangue , Osteomalacia/patologia , Análise de Sequência de DNA , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/patologia
20.
Genet Med ; 14(1): 51-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22237431

RESUMO

PURPOSE: This report describes the National Institutes of Health Undiagnosed Diseases Program, details the Program's application of genomic technology to establish diagnoses, and details the Program's success rate during its first 2 years. METHODS: Each accepted study participant was extensively phenotyped. A subset of participants and selected family members (29 patients and 78 unaffected family members) was subjected to an integrated set of genomic analyses including high-density single-nucleotide polymorphism arrays and whole exome or genome analysis. RESULTS: Of 1,191 medical records reviewed, 326 patients were accepted and 160 were admitted directly to the National Institutes of Health Clinical Center on the Undiagnosed Diseases Program service. Of those, 47% were children, 55% were females, and 53% had neurologic disorders. Diagnoses were reached on 39 participants (24%) on clinical, biochemical, pathologic, or molecular grounds; 21 diagnoses involved rare or ultra-rare diseases. Three disorders were diagnosed based on single-nucleotide polymorphism array analysis and three others using whole exome sequencing and filtering of variants. Two new disorders were discovered. Analysis of the single-nucleotide polymorphism array study cohort revealed that large stretches of homozygosity were more common in affected participants relative to controls. CONCLUSION: The National Institutes of Health Undiagnosed Diseases Program addresses an unmet need, i.e., the diagnosis of patients with complex, multisystem disorders. It may serve as a model for the clinical application of emerging genomic technologies and is providing insights into the characteristics of diseases that remain undiagnosed after extensive clinical workup.


Assuntos
Programas Governamentais , Programas Nacionais de Saúde , National Institutes of Health (U.S.) , Doenças Raras/diagnóstico , Doenças Raras/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Pesquisa Biomédica , Criança , Pré-Escolar , Protocolos Clínicos , Variações do Número de Cópias de DNA , Exoma , Feminino , Homozigoto , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Doenças Raras/mortalidade , Estados Unidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA