Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pediatr Blood Cancer ; : e31129, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952259

RESUMO

BACKGROUND: The objective of this study is to assess the concordance and added value of combined comparative genomic hybridization plus single-nucleotide polymorphism microarray (CGH/SNP) analyses in pediatric acute lymphoblastic leukemia (ALL) risk stratification compared to conventional cytogenetic methods. PROCEDURE: This is a retrospective study that included patients aged 1-18 years diagnosed with de novo ALL at Sainte-Justine Hospital between 2016 and 2021. Results from conventional cytogenetic and molecular analyses were collected and compared to those of CGH/SNP. RESULTS: A total of 135 ALL patients were included. Sample failures or non-diagnostic analyses occurred in 17.8% cases with G-banding karyotypes versus 1.5% cases with CGH/SNP. The mean turnaround time for results was significantly faster for CGH/SNP than karyotype with 5.8 versus 10.7 days, respectively. The comparison of ploidy assessment by CGH/SNP and G-banding karyotype showed strong concordance (r = .82, p < .001, r2 = .68). Furthermore, G-banding karyotype did not detect additional clinically relevant aberrations that were missed by the combined analysis of CGH/SNP and fluorescence in situ hybridization. The most common gene alterations detected by CGH/SNP were deletions involving CDKN2A (35.8%), ETV6 (31.3%), CDKN2B (28.4%), PAX5 (20.1%), IKZF1 (12.7%), and copy-neutral loss of heterozygosity (CN-LOH) of 9p (9.0%). Among these, only ETV6 deletion was found to have a significant prognostic impact with superior event-free survival in both univariate and multivariate analyses (adjusted hazard ratio 0.08, 95% confidence interval: 0.01-0.50, p = .02). CONCLUSION: CGH/SNP provided faster, reliable, and highly concordant results than those obtained by conventional cytogenetics. CGH/SNP identified recurrent gene deletions in pediatric ALL, of which ETV6 deletion conferred a favorable prognosis.

2.
Cancer Genet ; 235-236: 28-30, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31072725

RESUMO

Ewing sarcoma (ES), a common pediatric primary bone neoplasm, has a well-defined genomic landscape with various predisposing genomic elements including TP53, PMS2 and RET. Additionally, germline and somatic variants in protein tyrosine phosphatase delta (PTPRD), a tumor suppressor gene, have been identified in a limited number of ES patients. Here we present an ES patient, remarkable in terms of his young age and extent at presentation, found to have a PTPRD CNV. We explore the pathogenicity of this CNV, describe the patient's clinical course and touch upon the potential therapeutic implications in this subset of patients.


Assuntos
Neoplasias Ósseas/genética , Variações do Número de Cópias de DNA/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Sarcoma de Ewing/genética , Adolescente , Humanos , Masculino
3.
Genes Chromosomes Cancer ; 57(6): 311-319, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29427526

RESUMO

The advent of large scale genomic sequencing technologies significantly improved the molecular classification of acute megakaryoblastic leukaemia (AMKL). AMKL represents a subset (∼10%) of high fatality pediatric acute myeloid leukemia (AML). Recurrent and mutually exclusive chimeric gene fusions associated with pediatric AMKL are found in 60%-70% of cases and include RBM15-MKL1, CBFA2T3-GLIS2, NUP98-KDM5A and MLL rearrangements. In addition, another 4% of AMKL harbor NUP98 rearrangements (NUP98r), with yet undetermined fusion partners. We report a novel NUP98-BPTF fusion in an infant presenting with primary refractory AMKL. In this NUP98r, the C-terminal chromatin recognition modules of BPTF, a core subunit of the NURF (nucleosome remodeling factor) ATP-dependent chromatin-remodeling complex, are fused to the N-terminal moiety of NUP98, creating an in frame NUP98-BPTF fusion, with structural homology to NUP98-KDM5A. The leukemic blasts expressed two NUP98-BPTF splicing variants, containing one or two tandemly spaced PHD chromatin reader domains. Our study also identified an unreported wild type BPTF splicing variant encoding for 2 PHD domains, detected both in normal cord blood CD34+ cells and in leukemic blasts, as with the fly BPTF homolog, Nurf301. Disease course was marked by rapid progression and primary chemoresistance, with ultimately significant tumor burden reduction following treatment with a clofarabine containing regimen. In sum, we report 2 novel NUP98-BPTF fusion isoforms that contribute to refine the NUP98r subgroup of pediatric AMKL. Multicenter clinical trials are critically required to determine the frequency of this fusion in AMKL patients and explore innovative treatment strategies for a disease still plagued with poor outcomes.


Assuntos
Antígenos Nucleares/genética , Leucemia Megacarioblástica Aguda/genética , Proteínas do Tecido Nervoso/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fatores de Transcrição/genética , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Humanos , Lactente , Cariotipagem , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Masculino , Splicing de RNA
5.
J Neurodev Disord ; 6(1): 9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24834135

RESUMO

BACKGROUND: The chromodomain helicase DNA binding domain (CHD) proteins modulate gene expression via their ability to remodel chromatin structure and influence histone acetylation. Recent studies have shown that CHD2 protein plays a critical role in embryonic development, tumor suppression and survival. Like other genes encoding members of the CHD family, pathogenic mutations in the CHD2 gene are expected to be implicated in human disease. In fact, there is emerging evidence suggesting that CHD2 might contribute to a broad spectrum of neurodevelopmental disorders. Despite growing evidence, a description of the full phenotypic spectrum of this condition is lacking. METHODS: We conducted a multicentre study to identify and characterise the clinical features associated with haploinsufficiency of CHD2. Patients with deletions of this gene were identified from among broadly ascertained clinical cohorts undergoing genomic microarray analysis for developmental delay, congenital anomalies and/or autism spectrum disorder. RESULTS: Detailed clinical assessments by clinical geneticists showed recurrent clinical symptoms, including developmental delay, intellectual disability, epilepsy, behavioural problems and autism-like features without characteristic facial gestalt or brain malformations observed on magnetic resonance imaging scans. Parental analysis showed that the deletions affecting CHD2 were de novo in all four patients, and analysis of high-resolution microarray data derived from 26,826 unaffected controls showed no deletions of this gene. CONCLUSIONS: The results of this study, in addition to our review of the literature, support a causative role of CHD2 haploinsufficiency in developmental delay, intellectual disability, epilepsy and behavioural problems, with phenotypic variability between individuals.

6.
Hum Genet ; 120(2): 293-6, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16783568

RESUMO

The candidate gene for Mucopolysaccharidosis (MPS) type IIIC has been localized to the pericentric region of the chromosome 8 by the linkage disequilibrium analysis. To validate the localization of the gene, we rescued the deficient acetyl-coenzyme A: alpha-glucosaminide-N-acetylytransferase activity in the cultured cells of MPS IIIC patients by functional complementation via microcell-mediated chromosome transfer. The introduction of the target human monochromosome completely restored the activity confirming functional localization of the candidate gene on human chromosome 8.


Assuntos
Arilamina N-Acetiltransferase/genética , Cromossomos Humanos Par 8 , Fibroblastos/metabolismo , Mucopolissacaridose III/genética , Pele/citologia , Animais , Arilamina N-Acetiltransferase/deficiência , Fusão Celular , Linhagem Celular Tumoral , Células Cultivadas , Teste de Complementação Genética , Humanos , Células Híbridas , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA