Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 101: 105007, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354534

RESUMO

BACKGROUND: The dicarbonyl compounds methylglyoxal (MG), glyoxal (GO) and 3-deoxyglucosone (3-DG) have been linked to various diseases. However, disease-independent phenotypic and genotypic association studies with phenome-wide and genome-wide reach, respectively, have not been provided. METHODS: MG, GO and 3-DG were measured by LC-MS in 1304 serum samples of two populations (KORA, n = 482; BiDirect, n = 822) and assessed for associations with genome-wide SNPs (GWAS) and with phenome-wide traits. Redundancy analysis (RDA) was used to identify major independent trait associations. FINDINGS: Mutual correlations of dicarbonyls were highly significant, being stronger between MG and GO (ρ = 0.6) than between 3-DG and MG or GO (ρ = 0.4). Significant phenotypic results included associations of all dicarbonyls with sex, waist-to-hip ratio, glomerular filtration rate (GFR), gamma-glutamyltransferase (GGT), and hypertension, of MG and GO with age and C-reactive protein, of GO and 3-DG with glucose and antidiabetics, of MG with contraceptives, of GO with ferritin, and of 3-DG with smoking. RDA revealed GFR, GGT and, in case of 3-DG, glucose as major contributors to dicarbonyl variance. GWAS did not identify genome-wide significant loci. SNPs previously associated with glyoxalase activity did not reach nominal significance. When multiple testing was restricted to the lead SNPs of GWASs on the traits selected by RDA, 3-DG was found to be associated (p = 2.3 × 10-5) with rs1741177, an eQTL of NF-κB inhibitor NFKBIA. INTERPRETATION: This large-scale, population-based study has identified numerous associations, with GFR and GGT being of pivotal importance, providing unbiased perspectives on dicarbonyls beyond the current state. FUNDING: Deutsche Forschungsgemeinschaft, Helmholtz Munich, German Centre for Cardiovascular Research (DZHK), German Federal Ministry of Research and Education (BMBF).


Assuntos
Estudo de Associação Genômica Ampla , gama-Glutamiltransferase , Humanos , Taxa de Filtração Glomerular , Aldeído Pirúvico/metabolismo , Glioxal/metabolismo , Glucose , Polimorfismo de Nucleotídeo Único
2.
PLoS One ; 10(5): e0125232, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25969993

RESUMO

BACKGROUND: Basal-like and triple negative breast cancer (TNBC) share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR) occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR) have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown. MATERIALS AND METHODS: Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed. RESULTS: Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer. CONCLUSIONS: Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non-small cell lung cancer, accompanying mutations in PIK3CA may confer gefitinib resistance.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Transformação Celular Neoplásica/genética , Receptores ErbB/genética , Fosfatidilinositol 3-Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Classe I de Fosfatidilinositol 3-Quinases , Variações do Número de Cópias de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Exoma , Feminino , Gefitinibe , Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Modelos Biológicos , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Am J Hum Genet ; 95(1): 85-95, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995868

RESUMO

Restless legs syndrome (RLS) is a common neurologic condition characterized by nocturnal dysesthesias and an urge to move, affecting the legs. RLS is a complex trait, for which genome-wide association studies (GWASs) have identified common susceptibility alleles of modest (OR 1.2-1.7) risk at six genomic loci. Among these, variants in MEIS1 have emerged as the largest risk factors for RLS, suggesting that perturbations in this transcription factor might be causally related to RLS susceptibility. To establish this causality, direction of effect, and total genetic burden of MEIS1, we interrogated 188 case subjects and 182 control subjects for rare alleles not captured by previous GWASs, followed by genotyping of ∼3,000 case subjects and 3,000 control subjects, and concluded with systematic functionalization of all discovered variants using a previously established in vivo model of neurogenesis. We observed a significant excess of rare MEIS1 variants in individuals with RLS. Subsequent assessment of all nonsynonymous variants by in vivo complementation revealed an excess of loss-of-function alleles in individuals with RLS. Strikingly, these alleles compromised the function of the canonical MEIS1 splice isoform but were irrelevant to an isoform known to utilize an alternative 3' sequence. Our data link MEIS1 loss of function to the etiopathology of RLS, highlight how combined sequencing and systematic functional annotation of rare variation at GWAS loci can detect risk burden, and offer a plausible explanation for the specificity of phenotypic expressivity of loss-of-function alleles at a locus broadly necessary for neurogenesis and neurodevelopment.


Assuntos
Proteínas de Homeodomínio/genética , Proteínas de Neoplasias/genética , Síndrome das Pernas Inquietas/genética , Animais , Teste de Complementação Genética , Genótipo , Humanos , Hibridização In Situ , Espectrometria de Massas , Proteína Meis1 , Peixe-Zebra/embriologia
4.
Genome Res ; 24(4): 592-603, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24642863

RESUMO

Genome-wide association studies (GWAS) identified the MEIS1 locus for Restless Legs Syndrome (RLS), but causal single nucleotide polymorphisms (SNPs) and their functional relevance remain unknown. This locus contains a large number of highly conserved noncoding regions (HCNRs) potentially functioning as cis-regulatory modules. We analyzed these HCNRs for allele-dependent enhancer activity in zebrafish and mice and found that the risk allele of the lead SNP rs12469063 reduces enhancer activity in the Meis1 expression domain of the murine embryonic ganglionic eminences (GE). CREB1 binds this enhancer and rs12469063 affects its binding in vitro. In addition, MEIS1 target genes suggest a role in the specification of neuronal progenitors in the GE, and heterozygous Meis1-deficient mice exhibit hyperactivity, resembling the RLS phenotype. Thus, in vivo and in vitro analysis of a common SNP with small effect size showed allele-dependent function in the prospective basal ganglia representing the first neurodevelopmental region implicated in RLS.


Assuntos
Elementos Facilitadores Genéticos , Proteínas de Homeodomínio/genética , Proteínas de Neoplasias/genética , Síndrome das Pernas Inquietas/genética , Telencéfalo/crescimento & desenvolvimento , Alelos , Animais , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Íntrons , Camundongos , Proteína Meis1 , Polimorfismo de Nucleotídeo Único , Telencéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA