Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
ABCS health sci ; 48: [1-10], 14 fev. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1537358

RESUMO

Introduction: Skeletal muscle atrophy leads to a reduction in muscle strength, functionality, and the quality of life of individuals. Objective: To explore the effects of two different wavelengths (red and infrared) of laser PBMT on muscle atrophy and its active ingredients on skeletal muscle atrophy using an in vivo model of muscle atrophy. Methods: Thirty-two Wistar rats were randomly divided into four experimental groups: control (CG) animals were not immobilized and did not receive any type of treatment; immobilized animals with no treatment (ImC); immobilized animals submitted to red laser with wavelength of 660 nm (ImR) and near-infrared laser with wavelength of 808 nm (ImIR) treatments. The treatments were applied daily, at 2 points in the right gastrocnemius muscle (cranial and caudal), through the punctual contact technique, for 9 sessions, with the first application immediately after removing the cast. Results: The histological results demonstrated that in both treated groups (red and infrared wavelengths) a reduction of the inflammatory infiltrate and less connective tissue thickening when compared to the ImC. However, only infrared light was observed regenerating muscle fibers and an increase in the number of oxidative fibers (type I). Conclusion: These results suggest that red and infrared wavelength laser PBMT were able to promote changes in the morphology of the gastrocnemius muscle submitted to atrophy in an experimental immobilization model, reducing the inflammatory infiltrate and the formation of intramuscular connective tissue. However, infrared laser PBMT promoted more evident positive effects by increasing regenerating muscle fibers and the number of oxidative fibers.

2.
Lasers Med Sci ; 38(1): 36, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36626000

RESUMO

Epidermal growth factor (EGF) and light-emitting diode (LED) are currently deployed as promissory treatments for skin repair; however, the mechanisms of their association are not yet evidenced. Thus, the present study aimed to evaluate the effects of combined treatment with EGF and red LED on the wound healing processes in rats. Adult Wistar rats were randomized in control group (CG) wounds without treatment; wounds submitted to EGF treatment (EGF); wounds submitted to LED treatment (LED); wounds submitted to EGF associated with LED treatments (EGF/LED). Treatments were performed immediately after the surgical procedure and each 24 h, totaling 8 sessions. Moreover, LED was applied before EGF treatment at a single point in the center of the wound. Morphological characteristics and the immunoexpression of COX-2, VEGF, and TGF-ß were measured. The results demonstrated that EGF/LED group presented a higher wound healing index. Additionally, all experimental groups presented similar findings in the histological evaluation, the degree of inflammation, and the area of dermis-like tissue. However, for EGF-treated animals (with or without LED), neoepithelial length was higher. Furthermore, all the treated groups decreased COX-2 and increased VEGF immunoexpression, and only EGF/LED group enhanced the TGF-ß protein expression when compared to the untreated group. This research shows that EGF and LED modulate inflammatory process and increase the vascularity. In addition, treatment of EGF associated with LED promoted a more evident positive effect for increasing TGF-ß expression and may be promising resources in the clinical treatment of cutaneous wounds.


Assuntos
Fator de Crescimento Epidérmico , Fator A de Crescimento do Endotélio Vascular , Ratos , Animais , Fator de Crescimento Epidérmico/metabolismo , Ciclo-Oxigenase 2 , Ratos Wistar , Cicatrização , Fototerapia
3.
Lasers Med Sci ; 37(3): 1677-1686, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34554354

RESUMO

The purpose of this study is to evaluate the effects of photobiomodulation (PBM) therapy in chondrocyte response by in vitro experiments and cartilage repair using an experimental model of osteoarthritis (OA) in the knee of rats. The in vitro experiment was performed with chondrocyte cells, and they were divided into two groups: non-irradiated and irradiated with PBM (808 nm; 0.8 J or 1.4 J). Then, cell proliferation was evaluated after 1, 3, and 5 days. The experimental model of osteoarthritis (OA) was performed in the knee of 64 Wistar rats, and they were assorted into control group (CG), PBM (808 nm; 1.4 J). The results of in vitro showed that PBM 1.4 J increased cell proliferation, on days 1 and 5. However, after 3 days was demonstrated a significant increase in cell proliferation in PBM 0.8 J. The in vivo experiment results demonstrated, on histological analysis, that PBM presented less intense signs of tissue degradation with an initial surface discontinuity at the superficial zone and disorganization of the chondrocytes in the cartilage region when compared to CG, after 4 and 8 weeks. These findings were confirmed by immunohistochemistry and qRT-PCR analysis which showed that PBM increased IL-4, IL-10, COL-2, Aggrecan, and TGF-ß which are anabolic factors and acts on extracellular matrix. Also, PBM reduces the IL1-ß, an inflammatory marker that operates as a catabolic factor on articular cartilage. In conclusion, these results suggest that PBM may have led to a return to tissue homeostasis, promoting chondroprotective effects and stimulating the components of the articular tissue.


Assuntos
Cartilagem Articular , Terapia com Luz de Baixa Intensidade , Osteoartrite do Joelho , Osteoartrite , Animais , Cartilagem Articular/patologia , Condrócitos/patologia , Modelos Animais de Doenças , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/radioterapia , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/radioterapia , Ratos , Ratos Wistar
4.
Lasers Med Sci ; 37(3): 1921-1929, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34694503

RESUMO

We are currently facing a pandemic that continuously causes high death rates and has negative economic and psychosocial impacts. Therefore, this period requires a quick search for viable procedures that can allow us to use safe and non-invasive clinical tools as prophylactic or even adjuvant methods in the treatment of COVID-19. Some evidence shows that photobiomodulation therapy (PBMT) can attenuate the inflammatory response and reduce respiratory disorders similar to acute lung injury (ALI), complications associated with infections, such as the one caused by the new Coronavirus (SARS-CoV-2). Hence, the aim of the present study was to evaluate the influence of PBMT (infrared low-level laser therapy) on the treatment of ALI, one of the main critical complications of COVID-19 infection, in an experimental model in rats. Twenty-four male Wistar rats were randomly allocated to three experimental groups (n = 8): control group (CG), controlled ALI (ALI), and acute lung injury and PBM (ALIP). For treatment, a laser equipment was used (808 nm; 30 mw; 1.68 J) applied at three sites (anterior region of the trachea and in the ventral regions of the thorax, bilaterally) in the period of 1 and 24 h after induction of ALI. For treatment evaluation, descriptive histopathological analysis, lung injury score, analysis of the number of inflammatory cells, and expression of interleukin 1 ß (IL-1ß) were performed. In the results, it was possible to observe that the treatment with PBMT reduced inflammatory infiltrates, thickening of the alveolar septum, and lung injury score when compared to the ALI group. In addition, PBMT showed lower immunoexpression of IL-1ß. Therefore, based on the results observed in the present study, it can be concluded that treatment with PBMT (infrared low-level laser therapy) was able to induce an adequate tissue response capable of modulating the signs of inflammatory process in ALI, one of the main complications of COVID-19.


Assuntos
COVID-19 , Terapia com Luz de Baixa Intensidade , Animais , COVID-19/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , Pulmão/patologia , Masculino , Ratos , Ratos Wistar , SARS-CoV-2
5.
Acta Cir Bras ; 36(4): e360407, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34037082

RESUMO

PURPOSE: The aim of this work was to analyze the effect of fibrin biopolymer sealant (FS) associated or not to aquatic exercise (AE) on the calcaneal tendon repair. METHODS: Forty-four female Wistar rats were randomly divided into four experimental groups: Lesion control (L), Lesion and FS (LS), Lesion and AE (LE) and Lesion and FS associated to AE (LSE). The edema volume (EV), collagen ratio, and histopathological analysis were evaluated after 7, 14, and 21 days of partial tendon transection. RESULTS: The EV was statistically reduced for all treatment groups after 7 and 21 days when compared to L group. The LS and LSE had the highest EV reduction after 21 days of treatment. The FS group didn't induce tissue necrosis or infections on the histopathological analysis. It was observed tenocytes proliferation, granulation tissue and collagen formation in the tendon partial transection area in the FS group. The LSE demonstrated higher amount of granulation tissue and increased the collagen deposition at the injury site. CONCLUSIONS: Our data suggests that the therapeutic potential of the association of heterologous fibrin biopolymer sealant with aquatic exercise program should be further explored as it may stimulate the regeneration phase and optimize calcaneal tendon recovery.


Assuntos
Tendão do Calcâneo , Procedimentos de Cirurgia Plástica , Tendão do Calcâneo/cirurgia , Animais , Colágeno , Feminino , Adesivo Tecidual de Fibrina , Ratos , Ratos Wistar
6.
Commun Biol ; 4(1): 233, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608611

RESUMO

The engineering of multifunctional surgical bactericidal nanofibers with inherent suitable mechanical and biological properties, through facile and cheap fabrication technology, is a great challenge. Moreover, hernia, which is when organ is pushed through an opening in the muscle or adjacent tissue due to damage of tissue structure or function, is a dire clinical challenge that currently needs surgery for recovery. Nevertheless, post-surgical hernia complications, like infection, fibrosis, tissue adhesions, scaffold rejection, inflammation, and recurrence still remain important clinical problems. Herein, through an integrated electrospinning, plasma treatment and direct surface modification strategy, multifunctional bactericidal nanofibers were engineered showing optimal properties for hernia repair. The nanofibers displayed good bactericidal activity, low inflammatory response, good biodegradation, as well as optimal collagen-, stress fiber- and blood vessel formation and associated tissue ingrowth in vivo. The disclosed engineering strategy serves as a prominent platform for the design of other multifunctional materials for various biomedical challenges.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis , Gelatina/farmacologia , Hérnia Abdominal/cirurgia , Herniorrafia/instrumentação , Metacrilatos/farmacologia , Nanofibras , Poliésteres/farmacologia , Infecção da Ferida Cirúrgica/prevenção & controle , Alicerces Teciduais , Animais , Antibacterianos/química , Modelos Animais de Doenças , Gelatina/química , Hérnia Abdominal/patologia , Metacrilatos/química , Camundongos , Células NIH 3T3 , Nanomedicina , Poliésteres/química , Ratos , Infecção da Ferida Cirúrgica/microbiologia , Cicatrização/efeitos dos fármacos
7.
Lasers Med Sci ; 36(4): 863-870, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32827076

RESUMO

Ultraviolet radiation (UVR) is the major etiologic agent of cutaneous photoaging, and different strategies are used to prevent and treat this condition. The polysaccharide fraction (LBPF) isolated from Lycium Barbarum fruits (goji berry) contains several active ingredients with antioxidant, immune system modulation, and antitumor effects. In addition, the photobiomodulation (PBM) is widely applied in photoaging treatment. This study investigated the effects of LBPF and PBM against the UVR-induced photodamage in the skin of hairless mice. The mice were photoaged for 6 weeks in a chronic and cumulative exposure regimen using a 300-W incandescent lamp that simulates the UVR effects. From the third to the sixth week of photoaging induction, the animals received topical applications of LBPF and PBM, singly or combined, in different orders (first LBPF and then PBM and inversely), three times per week after each session of photoaging. After completion of experiments, the dorsal region skin was collected for the analysis of thickness, collagen content, and metalloproteinases (MMP) levels. A photoprotective potential against the increase of the epithelium thickness and the fragmentation of the collagen fibers was achieved in the skin of mice treated with LBPF or PBM singly, as well as their combination. All treatments maintained the skin collagen composition, except when PBM was applied after the LBPF. However, no treatment protected against the UVR-induced MMP increase. Taken together, we have shown that the LBPF and PBM promote a photoprotective effect in hairless mice skin against epidermal thickening and low collagen density. Both strategies, singly and combined, can be used to reduce the UVR-induced cutaneous photoaging.


Assuntos
Colágeno/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Epitélio/efeitos dos fármacos , Epitélio/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Pele/patologia , Pele/efeitos da radiação , Animais , Epitélio/patologia , Camundongos , Camundongos Pelados , Pele/efeitos dos fármacos , Pele/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/patologia , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos
8.
Lasers Med Sci ; 36(6): 1235-1240, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33083912

RESUMO

Acne vulgaris is the most recurring skin condition in the world, causing great harm to the physical and psychological well-being of many patients. Antimicrobial photodynamic therapy (aPDT) has broad therapeutic applicability. The purpose was to evaluate in vitro the photodynamic inactivation against Propionibacterium acnes (P. acnes) biofilms by using different concentrations of hypericin (Hypericum perforatum) photosensitizer associated with different energies of low-level laser. The biofilms were placed in 96-well microplates with a 6.4-mm diameter surface, by using standard suspensions (2 × 107 CFU/mL) and grown in brain heart infusion broth (BHI) for 48 h in anaerobic chamber. Subsequently, the control group received application of 0.9% sterile saline solution for 3 min; the photosensitising groups received hypericin at concentrations of 5 and 15 µg/mL for 3 min; the laser groups received irradiation of energies of 3 and 5 J (660 nm, continuous output, 100 mW, 30 and 50 s and 100 J/cm2 and 166 J/cm2, respectively); the aPDT groups received 5 and 15 µg/mL concentrations of hypericin associated with energies of 3 and 5 J of low-level laser irradiation. After the biofilms were broken up and seeded for CFU counting. The results showed a reduction in P. acnes biofilms after aPDT emphasising that 15 µg/mL hypericin associated with 3 and 5 J laser irradiation reduced biofilms by 14.1 and 27.9%, respectively. In addition, all groups of aPDT demostrated statistically significant reductions. In vitro photodynamic inactivation against P. acnes biofilms using different concentration of hypericin photosensitizer associated with different energies of low-level laser promoted effective antimicrobial action.


Assuntos
Fotoquimioterapia , Acne Vulgar/tratamento farmacológico , Antracenos , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Biofilmes/efeitos da radiação , Humanos , Hypericum , Lasers , Luz , Perileno/análogos & derivados , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Propionibacterium acnes
9.
Acta cir. bras ; 36(4): e360407, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1248542

RESUMO

ABSTRACT Purpose The aim of this work was to analyze the effect of fibrin biopolymer sealant (FS) associated or not to aquatic exercise (AE) on the calcaneal tendon repair. Methods Forty-four female Wistar rats were randomly divided into four experimental groups: Lesion control (L), Lesion and FS (LS), Lesion and AE (LE) and Lesion and FS associated to AE (LSE). The edema volume (EV), collagen ratio, and histopathological analysis were evaluated after 7, 14, and 21 days of partial tendon transection. Results The EV was statistically reduced for all treatment groups after 7 and 21 days when compared to L group. The LS and LSE had the highest EV reduction after 21 days of treatment. The FS group didn't induce tissue necrosis or infections on the histopathological analysis. It was observed tenocytes proliferation, granulation tissue and collagen formation in the tendon partial transection area in the FS group. The LSE demonstrated higher amount of granulation tissue and increased the collagen deposition at the injury site. Conclusions Our data suggests that the therapeutic potential of the association of heterologous fibrin biopolymer sealant with aquatic exercise program should be further explored as it may stimulate the regeneration phase and optimize calcaneal tendon recovery.


Assuntos
Animais , Feminino , Ratos , Tendão do Calcâneo/cirurgia , Procedimentos de Cirurgia Plástica , Adesivo Tecidual de Fibrina , Colágeno , Ratos Wistar
10.
Wound Repair Regen ; 28(5): 645-655, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32590890

RESUMO

Prolonged skin exposure to ultraviolet radiation (UVR) induces premature aging in both the epidermis and the dermis. Chronic exposure to UVR induces the activation of mitogen-activated protein kinase (MAPK) signaling pathway, activating c-Jun, c-Fos expression, and transcription factor of AP-1 activating protein. AP-1 activation results in the positive induction of matrix metalloproteinase (MMP) synthesis, which degrade skin collagen fibers. Polysaccharides from the fruit of Lycium barbarum (LBP fraction) have a range of activities and have been demonstrate to repair the photodamage. In different approaches, laser application aims to recover the aged skin without destroying the epidermis, promoting a modulation, called photobiomodulation (PBM), which leads to protein synthesis and cell proliferation, favoring tissue repair. Here we developed a topical hydrogel formulation from a polysaccharide-rich fraction of Lycium barbarum fruits (LBP). This formulation was associated with PBM (red laser) to evaluate whether the isolated and combined treatments would reduce the UVR-mediated photodamage in mice skin. Hairless mice were photoaged for 6 weeks and then treated singly or in combination with LBP and PBM. Histological, immunohistochemistry, and immunofluorescence analyses were used to investigate the levels of c-Fos, c-Jun, MMP-1, -2, and -9, collagen I, III, and FGF2. The combined regimen inhibited UVR-induced skin thickening, decreased the expression of c-Fos and c-Jun, as well as MMP-1, -2, and -9 and concomitantly increased the levels of collagen I, III, and FGF2. The PBM in combination with LBP treatment is a promising strategy for the repair of photodamaged skin, presenting potential clinical application in skin rejuvenation.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Hidrogéis/farmacologia , Terapia com Luz de Baixa Intensidade , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Cicatrização/efeitos dos fármacos , Cicatrização/efeitos da radiação , Animais , Modelos Animais de Doenças , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Camundongos , Camundongos Pelados , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
11.
Lasers Med Sci ; 35(1): 157-164, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31168678

RESUMO

The aim of the present study was to evaluate the in vivo response of different wavelengths (red and near-infrared) of light-emitting diode (LED) on full-thickness skin grafts (FTSG) in rats. Thirty rats were randomly allocated into three experimental groups: control group (C); red LED treated group (R); and near-infrared LED group (NIR). Skin grafts were irradiated daily for ten consecutive days, starting immediately after the surgery using a red (630 nm) or near-infrared (850 nm) LED. The results showed that the red wavelength LED significantly enhanced the skin graft score in relation to the NIR group and increased transforming growth factor beta (TGF-ß) protein expression and density of collagen fibers compared with the other experimental groups. These results suggest that the red wavelength LED was efficient to improve the dermo-epidermal junction and modulate the expression proteins related to tissue repair.


Assuntos
Raios Infravermelhos/uso terapêutico , Fototerapia/métodos , Transplante de Pele , Animais , Colágeno/metabolismo , Epiderme/metabolismo , Epiderme/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Masculino , Ratos , Fator de Crescimento Transformador beta/metabolismo , Cicatrização/fisiologia , Cicatrização/efeitos da radiação
12.
Lasers Med Sci ; 35(4): 939-947, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31833005

RESUMO

Skin graft is one of the most common techniques used in plastic surgery and repair. However, there are some complications that can lead to loss of the skin graft. Thus, several features have been studied with the aim of promoting the integration of skin grafts. Among these resources, the use of laser photobiomodulation (laser PBM) has been highlighted. The present study aimed to investigate the effects of laser PBM on the viability and integration of skin grafts in rats. Twenty male Wistar rats (± 250 g) were randomly assigned into two experimental groups with 10 animals each: control group, animals submitted to skin graft and simulation of laser PBM; laser PBM group, submitted to the skin graft and submitted to laser PBM at 660 nm, 40 mW, 60 s, 2.4 J. The animals were submitted to laser photobiomodulation immediately after the surgical procedure and each 24 h. Animal euthanasia occurred on the 7th day after surgery, 24 h after the last treatment session. The histopathological analysis revealed that the laser PBM showed better adhesion of the graft when compared to the control group. Likewise, the morphometric analysis of mast cells, blood vessels, and collagen showed a statistically significant increase in the animals irradiated with the laser PBM when compared to the control group. In addition, immunohistochemical analysis demonstrated that the laser PBM showed statistically higher immunoexpression of FGF when compared to the CG. However, IL-4 immunoexpression did not show statistical difference between the experimental groups. From the results obtained in the present study, it can be suggested that laser photobiomodulation was effective in promoting the integration and viability of total skin grafts in rats.


Assuntos
Terapia com Luz de Baixa Intensidade , Transplante de Pele , Animais , Contagem de Células , Colágeno/metabolismo , Interleucina-4/metabolismo , Masculino , Mastócitos/metabolismo , Ratos Wistar , Pele/irrigação sanguínea , Pele/patologia
13.
Braz. arch. biol. technol ; 63: e20180668, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1132159

RESUMO

Abstract The aim of this study was to evaluate the in vivo response of red light-emitting diode (LED) on acute lung injury (ALI) in a sepsis model in rats. Twenty rats were randomly allocated into two experimental groups (n=10): Control Sepsis Group (CS); sepsis and red LED group (SRL). The anterior region of the trachea and ventral regions of the chest (below the ribs), bilaterally were irradiated daily for two consecutive days, starting immediately after the surgery using red (630 nm) LED. The histological results showed that in red LED treated group presented a modulation of the lung inflammatory process, less intense alveolar septum thickening and decrease of the inflammatory cells. Moreover, LED significantly reduced the lung injury score and increased interleukin type 10 (IL-10) protein expression compared SG. These results suggest that LED was efficient in attenuating ALI in a sepsis model in rats by reducing inflammatory cells into lung tissue and enhancing the anti-inflammatory cytokine production.


Assuntos
Animais , Masculino , Ratos , Sepse/terapia , Terapia com Luz de Baixa Intensidade , Lasers Semicondutores , Lesão Pulmonar Aguda/terapia , Biomarcadores , Ratos Wistar , Modelos Animais de Doenças
14.
Clin Oral Investig ; 23(1): 413-421, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29700614

RESUMO

OBJECTIVE: The aim of the study was to analyze bone matrix (BMX) organization after bone grafting and repair using a new bioactive glass-ceramic (Biosilicate®) associated or not with particulate autogenous bone graft. MATERIAL AND METHODS: Thirty rabbits underwent surgical bilateral parietal defects and divided into groups according to the materials used: (C) control-blood clot, (BG) particulate autogenous bone, (BS) bioactive glass-ceramic, and BG + BS. After 7, 14, and 30 days post-surgery, a fragment of each specimen was fixed in - 80 °C liquid nitrogen for zymographic evaluation, while the remaining was fixed in 10% formalin for histological birefringence analysis. RESULTS: The results of this study demonstrated that matrix organization in experimental groups was significantly improved compared to C considering collagenous organization. Zymographic analysis revealed pro-MMP-2, pro-MMP-9, and active (a)-MMP-2 in all groups, showing gradual decrease of total gelatinolytic activity during the periods. At day 7, BG presented more prominent gelatinolytic activity for pro-MMP-2 and 9 and a-MMP-2, when compared to the other groups. In addition, at day 7, a 53% activation ratio (active form/[active form + latent form]) was evident in C group, 33% in BS group, and 31% in BG group. CONCLUSION: In general, BS allowed the production of a BMX similar to BG, with organized collagen deposition and MMP-2 and MMP-9 disponibility, permitting satisfactory bone remodeling at the late period. CLINICAL RELEVANCE: The evaluation of new bone substitute, with favorable biological properties, opens the possibility for its use as a viable and efficient alternative to autologous bone graft.


Assuntos
Substitutos Ósseos/farmacologia , Transplante Ósseo/métodos , Cerâmica/farmacologia , Crânio/cirurgia , Animais , Materiais Biocompatíveis/farmacologia , Birrefringência , Matriz Óssea , Regeneração Óssea/fisiologia , Modelos Animais de Doenças , Vidro , Masculino , Teste de Materiais , Coelhos , Coloração e Rotulagem , Transplante Autólogo
15.
Biomed Mater Eng ; 29(5): 665-683, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30400079

RESUMO

This study aimed to investigate the in vivo tissue response of the Biosilicate® scaffolds in a model of tibial bone defect. Sixty male Wistar rats were distributed into bone defect control group (CG) and Biosilicate® scaffold group (BG).  Animals were euthanized 15, 30 and 45 days post-surgery. Stereomicroscopy, scanning electron microscopy, histopathological, immunohistochemistry and biomechanical analysis were used. Scaffolds had a total porosity of 44%, macroporosity of 15% with pore diameter of 230 µm. Higher amount of newly formed bone was observed on days 30 and 45 in BG. Immunohistochemistry analysis showed that the COX-2 expression was significantly higher on days 15 and 30 in BG compared with the CG. RUNX-2 immunoexpression was significantly higher in BG on days 15 and 45. No statistically significant difference was observed in RANKL immunoexpression in all experimental groups. BMP-9 immunoexpression was significantly upregulated in the BG on day 45. Biomechanical analysis showed a decrease in the biomechanical properties of the bone callus on days 30 and 45. The implantation of the Biosilicate® scaffolds was effective in stimulating newly bone formation and produced an increased immunoexpression of markers related to the bone repair.


Assuntos
Substitutos Ósseos/química , Vidro/química , Tíbia/patologia , Fraturas da Tíbia/terapia , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Consolidação da Fratura , Masculino , Osteogênese , Ratos , Ratos Wistar , Tíbia/lesões , Fraturas da Tíbia/patologia
16.
J Photochem Photobiol B ; 187: 41-47, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30098521

RESUMO

OBJECTIVE: Mitochondrial dysfunction has been associated with the development of diabetes mellitus which is characterized by disorders of collagen production and impaired wound healing. This study analyzed the effects of photobiomodulation (PBM) mediated by laser and light-emitting diode (LED) on the production and organization of collagen fibers in an excisional wound in an animal model of diabetes, and the correlation with inflammation and mitochondrial dynamics. METHODS: Twenty Wistar rats were randomized into 4 groups of 5 animals. Groups: (SHAM) a control non-diabetic wounded group with no treatment; (DC) a diabetic wounded group with no treatment; (DLASER) a diabetic wounded group irradiated by 904 nm pulsed laser (40 mW, 9500 Hz, 1 min, 2.4 J); (DLED) a diabetic wounded group irradiated by continuous wave LED 850 nm (48 mW, 22 s, 1.0 J). Diabetes was induced by injection with streptozotocin (70 mg/kg). PBM was carried out daily for 5 days followed by sacrifice and tissue removal. RESULTS: Collagen fibers in diabetic wounded skin were increased by DLASER but not by DLED. Both groups showed increased blood vessels by atomic force microscopy. Vascular endothelial growth factor (VEGF) was higher and cyclooxygenase (COX2) was lower in the DLED group. Mitochondrial fusion was higher and mitochondrial fusion was lower in DLED compared to DLASER. CONCLUSION: Differences observed between DLASER and DLED may be due to the pulsed laser and CW LED, and to the higher dose of laser. Regulation of mitochondrial homeostasis may be an important mechanism for PBM effects in diabetes.


Assuntos
Colágeno/metabolismo , Lasers , Luz , Dinâmica Mitocondrial/efeitos da radiação , Animais , Ciclo-Oxigenase 2/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , GTP Fosfo-Hidrolases , Masculino , Proteínas de Membrana/metabolismo , Microscopia de Força Atômica , Proteínas Mitocondriais/metabolismo , Ratos , Ratos Wistar , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos da radiação
17.
J Photochem Photobiol B ; 154: 8-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26599085

RESUMO

The process of bone healing as well as the expression of inflammatory and angiogenic genes after low level laser therapy (LLLT) were investigated in an experimental model of bone defects. Sixty Wistar rats were distributed into control group and laser group (830nm, 30mW, 2,8J, 94seg). Histopathological analysis showed that LLLT was able to modulate the inflammatory process in the area of the bone defect and also to produce an earlier deposition of granulation tissue and newly formed bone tissue. Microarray analysis demonstrated that LLLT produced an up-regulation of the genes related to the inflammatory process (MMD, PTGIR, PTGS2, Ptger2, IL1, 1IL6, IL8, IL18) and the angiogenic genes (FGF14, FGF2, ANGPT2, ANGPT4 and PDGFD) at 36h and 3days, followed by the decrease of the gene expression on day 7. Immunohistochemical analysis revealed that the subjects that were treated presented a higher expression of COX-2 at 36h after surgery and an increased VEGF expression on days 3 and 7 after surgery. Our findings indicate that LLLT was efficient on accelerating the development of newly formed bone probably by modulating the inflammatory and angiogenic gene expression as well as COX2 and VEGF immunoexpression during the initial phase of bone healing.


Assuntos
Doenças Ósseas/radioterapia , Regulação da Expressão Gênica/efeitos dos fármacos , Terapia com Luz de Baixa Intensidade , Animais , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Regeneração Óssea/efeitos da radiação , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Masculino , Análise em Microsséries , Ratos , Ratos Wistar , Receptores de Epoprostenol , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Regulação para Cima/efeitos da radiação , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
J Mater Sci Mater Med ; 26(2): 74, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25631271

RESUMO

The aim of this study was to evaluate the effects of highly porous Biosilicate(®) scaffolds on bone healing in a tibial bone defect model in rats by means of histological evaluation (histopathological and immunohistochemistry analysis) of the bone callus and the systemic inflammatory response (immunoenzymatic assay). Eighty Wistar rats (12 weeks-old, weighing±300 g) were randomly divided into 2 groups (n=10 per experimental group, per time point): control group and Biosilicate® group (BG). Each group was euthanized 3, 7, 14 and 21 days post-surgery. Histological findings revealed a similar inflammatory response in both experimental groups, 3 and 7 days post-surgery. During the experimental periods (3-21 days post-surgery), it was observed that the biomaterial degradation, mainly in the periphery region, provided the development of the newly formed bone into the scaffolds. Immunohistochemistry analysis demonstrated that the Biosilicate® scaffolds stimulated cyclooxygenase-2, vascular endothelial growth factor and runt-related transcription factor 2 expression. Furthermore, in the immunoenzymatic assay, BG presented no difference in the level of tumor necrosis factor alpha in all experimental periods. Still, BG showed a higher level of interleukin 4 after 14 days post-implantation and a lower level of interleukin 10 in 21 days post-surgery. Our results demonstrated that Biosilicate® scaffolds can contribute for bone formation through a suitable architecture and by stimulating the synthesis of markers related to the bone repair.


Assuntos
Regeneração Óssea , Vidro/química , Osseointegração , Fraturas da Tíbia/patologia , Fraturas da Tíbia/terapia , Alicerces Teciduais , Animais , Análise de Falha de Equipamento , Masculino , Teste de Materiais , Porosidade , Desenho de Prótese , Ratos , Fraturas da Tíbia/fisiopatologia , Resultado do Tratamento
19.
Lasers Med Sci ; 29(5): 1669-78, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24722775

RESUMO

The aim of this study was to analyze the effects of low-level laser therapy (LLLT) on the prevention of cartilage damage after the anterior cruciate ligament transection (ACLT) in knees of rats. Thirty male rats (Wistar) were distributed into three groups (n = 10 each): injured control group (CG); injured laser-treated group at 10 J/cm(2) (L10), and injured laser-treated group at 50 J/cm(2) (L50). Laser treatment started immediately after the surgery and it was performed for 15 sessions. An 808 nm laser, at 10 and 50 J/cm(2), was used. To evaluate the effects of LLLT, the qualitative and semi-quantitative histological, morphometric, and immunohistochemistry analysis were performed. Initial signs of tissue degradation were observed in CG. Interestingly, laser-treated animals presented a better tissue organization, especially at the fluence of 10 J/cm(2). Furthermore, laser phototherapy was able of modulating some of the aspects related to the degenerative process, such as the prevention of proteoglycans loss and the increase in cartilage area. However, LLLT was not able of modulating chondrocytes proliferation and the immunoexpression of markers related to inflammatory process (IL-1 and MMP-13). This study showed that 808 nm laser, at both fluences, prevented features related to the articular degenerative process in the knees of rats after ACLT.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/patologia , Terapia com Luz de Baixa Intensidade , Animais , Modelos Animais de Doenças , Imuno-Histoquímica , Interleucina-1beta/metabolismo , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Ratos Wistar
20.
Aging Clin Exp Res ; 26(5): 473-81, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24532218

RESUMO

The aim of this study was to evaluate the influence of postmenopausal bone loss (induced by ovariectomy) in the process of bone healing in a tibial bone defect model in rats by means of histological evaluation of bone defects and the analysis of the expression of genes and proteins involved in bone consolidation. Twenty female Wistar rats (12 weeks old, weighing ±250 g) were randomly divided into two groups: control group (CG) and ovariectomized group (OG). Rats of OG were submitted to ovariectomy and after 8 weeks post-surgery, all animals were submitted to the tibial bone defect model. The main histological finding analysis revealed that ovariectomized animals showed a higher amount of granulation tissue and immature newly formed bone compared to CG. Furthermore, quantitative histological analysis showed that OG presented a significant decrease in the amount of newly formed bone (p = 0.0351). RT-PCR analysis showed no difference in Runx2, ALP, RANK, RANKL and Osterix gene expression 14-day post-surgery. Interestingly, immunohistochemical evaluation showed that Runx2 was down expressed (p = 0.0001) and RANKL was up expressed (p = 0.0022) in the OG. In conclusion, these data highlight that bone loss induced by ovariectomy causes an impairment in the capacity of bone to heal mainly probably because of alterations in the imbalance of osteoblasts and osteoclasts activities.


Assuntos
Osso e Ossos/patologia , Consolidação da Fratura , Tíbia/fisiopatologia , Fosfatase Alcalina/metabolismo , Animais , Regeneração Óssea , Osso e Ossos/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Imuno-Histoquímica , Osteogênese , Osteoporose/metabolismo , Ovariectomia , Ligante RANK/metabolismo , Ratos , Ratos Wistar , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA