Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 43, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200582

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) remains a leading life-threatening health challenge worldwide, with pressing needs for novel therapeutic strategies. Sphingosine kinase 1 (SphK1), a well-established pro-cancer enzyme, is aberrantly overexpressed in a multitude of malignancies, including HCC. Our previous research has shown that genetic ablation of Sphk1 mitigates HCC progression in mice. Therefore, the development of PF-543, a highly selective SphK1 inhibitor, opens a new avenue for HCC treatment. However, the anti-cancer efficacy of PF-543 has not yet been investigated in primary cancer models in vivo, thereby limiting its further translation. METHODS: Building upon the identification of the active form of SphK1 as a viable therapeutic target in human HCC specimens, we assessed the capacity of PF-543 in suppressing tumor progression using a diethylnitrosamine-induced mouse model of primary HCC. We further delineated its underlying mechanisms in both HCC and endothelial cells. Key findings were validated in Sphk1 knockout mice and lentiviral-mediated SphK1 knockdown cells. RESULTS: SphK1 activity was found to be elevated in human HCC tissues. Administration of PF-543 effectively abrogated hepatic SphK1 activity and significantly suppressed HCC progression in diethylnitrosamine-treated mice. The primary mechanism of action was through the inhibition of tumor neovascularization, as PF-543 disrupted endothelial cell angiogenesis even in a pro-angiogenic milieu. Mechanistically, PF-543 induced proteasomal degradation of the critical glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, thus restricting the energy supply essential for tumor angiogenesis. These effects of PF-543 could be reversed upon S1P supplementation in an S1P receptor-dependent manner. CONCLUSIONS: This study provides the first in vivo evidence supporting the potential of PF-543 as an effective anti-HCC agent. It also uncovers previously undescribed links between the pro-cancer, pro-angiogenic and pro-glycolytic roles of the SphK1/S1P/S1P receptor axis. Importantly, unlike conventional anti-HCC drugs that target individual pro-angiogenic drivers, PF-543 impairs the PFKFB3-dictated glycolytic energy engine that fuels tumor angiogenesis, representing a novel and potentially safer therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfotransferases (Aceptor do Grupo Álcool) , Pirrolidinas , Sulfonas , Animais , Humanos , Camundongos , Angiogênese , Carcinoma Hepatocelular/genética , Dietilnitrosamina , Células Endoteliais , Neoplasias Hepáticas/genética , Metanol , Neovascularização Patológica , Fosfofrutoquinase-2 , Receptores de Esfingosina-1-Fosfato
2.
Front Immunol ; 14: 1245708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795103

RESUMO

Introduction: Liver cancers exhibit abnormal (leaky) vasculature, hypoxia and an immunosuppressive microenvironment. Normalization of tumor vasculature is an emerging approach to treat many cancers. Blockmir CD5-2 is a novel oligonucleotide-based inhibitor of the miR-27a interaction with VE-Cadherin, the endothelial-specific cadherin. The combination of a vasoactive medication with inhibition of immune checkpoints such as programmed cell death protein 1 (PD1) has been shown to be effective in treating liver cancer in humans. We aimed to study the effect of CD5-2 combined with checkpoint inhibition (using an antibody against PD1) on liver tumor growth, vasculature and immune infiltrate in the diethylnitrosamine (DEN)-induced liver tumor mouse model. Methods: We first analyzed human miR-27a and VE-Cadherin expression data from The Cancer Genome Atlas for hepatocellular carcinoma. CD5-2 and/or anti-PD1 antibody were given to the DEN-treated mice from age 7-months until harvest at age 9-months. Tumor and non-tumor liver tissues were analyzed using histology, immunohistochemistry, immunofluorescence and scanning electron microscopy. Results: Human data showed high miR-27a and low VE-Cadherin were both significantly associated with poorer prognosis. Mice treated with CD5-2 plus anti-PD1 antibody had significantly smaller liver tumors (50% reduction) compared to mice treated with either agent alone, controls, or untreated mice. There was no difference in tumor number. Histologically, tumors in CD5-2-treated mice had less leaky vessels with higher VE-Cadherin expression and less tumor hypoxia compared to non-CD5-2-treated mice. Only tumors in the combination CD5-2 plus anti-PD1 antibody group exhibited a more favorable immune infiltrate (significantly higher CD3+ and CD8+ T cells and lower Ly6G+ neutrophils) compared to tumors from other groups. Discussion: CD5-2 normalized tumor vasculature and reduced hypoxia in DEN-induced liver tumors. CD5-2 plus anti-PD1 antibody reduced liver tumor size possibly by altering the immune infiltrate to a more immunosupportive one.


Assuntos
Neoplasias Hepáticas , MicroRNAs , Humanos , Camundongos , Animais , Lactente , Dietilnitrosamina/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia , Microambiente Tumoral
3.
Cancers (Basel) ; 13(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917287

RESUMO

The effectiveness of immunotherapy against solid tumours is dependent on the appropriate leucocyte subsets trafficking and accumulating in the tumour microenvironment (TME) with recruitment occurring at the endothelium. Such recruitment involves interactions between the leucocytes and the endothelial cells (ECs) of the vessel and occurs through a series of steps including leucocyte capture, their rolling, adhesion, and intraluminal crawling, and finally leucocyte transendothelial migration across the endothelium. The tumour vasculature can curb the trafficking of leucocytes through influencing each step of the leucocyte recruitment process, ultimately producing an immunoresistant microenvironment. Modulation of the tumour vasculature by strategies such as vascular normalisation have proven to be efficient in facilitating leucocyte trafficking into tumours and enhancing immunotherapy. In this review, we discuss the underlying mechanisms of abnormal tumour vasculature and its impact on leucocyte trafficking, and potential strategies for overcoming the tumour vascular abnormalities to boost immunotherapy via increasing leucocyte recruitment.

4.
Cancer Lett ; 496: 1-15, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991950

RESUMO

Vascular normalisation, the process that reverses the structural and functional abnormalities seen in tumour-associated vessels, is also accompanied by changes in leucocyte trafficking. Our previous studies have shown the normalisation effects of the agent CD5-2 which acts to stabilise VE-Cadherin leading to increased penetration of CD8+ T cells but decreased infiltration of neutrophils (CD11b+Gr1hi) into tumour parenchyma. In the present study, we demonstrate that VE-Cadherin stabilisation through CD5-2 treatment of purified endothelial cells (ECs) results in a similar leucocyte-selective regulation of transmigration, suggesting the existence of an endothelial specific intrinsic mechanism. Further, we show by RNA sequencing (RNA-seq)-based transcriptomic analysis, that treatment of ECs with CD5-2 regulates chemokines known to be involved in leucocyte transmigration, including upregulation of CCL2 and CXCL10 that facilitate CD8+ T cell transmigration. Both in vitro and in vivo mechanistic studies revealed that the increased CCL2 expression was dependent on expression of VE-Cadherin and downstream activation of the AKT/GSK3ß/ß-catenin/TCF4 signalling pathway. CD5-2 treatment also contributed to the reorganisation of the cytoskeleton, inducing reorganisation of stress fibres to circumferential actin, which previously has been described as associated with the stabilisation of the endothelial barrier, and amplification of the transcellular migration of CD8+ T cells. Thus, we propose that promotion of endothelial junctional integrity during vascular normalisation not only inhibits vascular leak but also resets the endothelial dependent regulation of immune cell infiltration.


Assuntos
Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/imunologia , Caderinas/metabolismo , Endotélio Vascular/patologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/patologia , Oligonucleotídeos/farmacologia , beta Catenina/metabolismo , Animais , Antígenos CD/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/genética , Proliferação de Células , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos , Pessoa de Meia-Idade , Neutrófilos/imunologia , beta Catenina/genética
5.
PLoS Biol ; 18(6): e3000734, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32502201

RESUMO

Cerebral cavernous malformations (CCMs) are vascular lesions predominantly developing in the central nervous system (CNS), with no effective treatments other than surgery. Loss-of-function mutation in CCM1/krev interaction trapped 1 (KRIT1), CCM2, or CCM3/programmed cell death 10 (PDCD10) causes lesions that are characterized by abnormal vascular integrity. Vascular endothelial cadherin (VE-cadherin), a major regulator of endothelial cell (EC) junctional integrity is strongly disorganized in ECs lining the CCM lesions. We report here that microRNA-27a (miR-27a), a negative regulator of VE-cadherin, is elevated in ECs isolated from mouse brains developing early CCM lesions and in cultured ECs with CCM1 or CCM2 depletion. Furthermore, we show miR-27a acts downstream of kruppel-like factor (KLF)2 and KLF4, two known key transcription factors involved in CCM lesion development. Using CD5-2 (a target site blocker [TSB]) to prevent the miR-27a/VE-cadherin mRNA interaction, we present a potential therapy to increase VE-cadherin expression and thus rescue the abnormal vascular integrity. In CCM1- or CCM2-depleted ECs, CD5-2 reduces monolayer permeability, and in Ccm1 heterozygous mice, it restores dermal vessel barrier function. In a neonatal mouse model of CCM disease, CD5-2 normalizes vasculature and reduces vascular leakage in the lesions, inhibits the development of large lesions, and significantly reduces the size of established lesions in the hindbrain. Furthermore, CD5-2 limits the accumulation of inflammatory cells in the lesion area. Our work has established that VE-cadherin is a potential therapeutic target for normalization of the vasculature and highlights that targeting miR-27a/VE-cadherin interaction by CD5-2 is a potential novel therapy for the devastating disease, CCM.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , MicroRNAs/metabolismo , Animais , Regulação para Baixo/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Rombencéfalo/irrigação sanguínea , Rombencéfalo/patologia , Regulação para Cima/genética , Proteína rhoA de Ligação ao GTP/metabolismo
6.
Biochim Biophys Acta Mol Basis Dis ; 1865(11): 165519, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369819

RESUMO

Cerebral cavernous malformations (CCMs) are vascular malformations that cause hemorrhagic stroke. CCMs can arise from loss-of-function mutations in any one of CCM1 (KRIT1), CCM2 or CCM3 (PDCD10). Despite the mutation being in all endothelial cells the CCM lesions develop primarily in the regions with low fluid shear stress (FSS). Here we investigated the role of FSS in the signalling pathways associated with loss of function of CCM genes. We performed transcriptomic analysis on CCM1 or CCM2-silenced endothelial cells subjected to various FSS. The results showed 1382 genes were deregulated under low FSS, whereas only 29 genes were deregulated under high FSS. Key CCM downstream signalling pathways, including increased KLF2/4 expression, actin cytoskeleton reorganization, TGF-ß and toll-like receptor signalling pathways and also oxidative stress pathways, were all highly upregulated but only under low FSS. We also show that the key known phenotypes of CCM lesions such as disrupted endothelial cell junction, increased inflammatory response/oxidative stress and elevated RhoA-ROCK activity, are only exhibited in monolayers of CCM-silenced endothelial cells subjected to low FSS. Our data establishes that shear stress acts as a previously unappreciated but important regulator for CCM gene function and may determine the site of CCM lesion development.


Assuntos
Neoplasias do Sistema Nervoso Central/patologia , Células Endoteliais/patologia , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Transdução de Sinais , Animais , Velocidade do Fluxo Sanguíneo , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Retina/metabolismo , Retina/patologia , Transcriptoma , Regulação para Cima
7.
Cancer Res ; 77(16): 4434-4447, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28655790

RESUMO

T-cell infiltration of solid tumors is associated with improved prognosis and favorable responses to immunotherapy. Mechanisms that enable tumor infiltration of CD8+ T cells have not been defined, nor have drugs that assist this process been discovered. Here we address these issues with a focus on VE-cadherin, a major endothelial cell-specific junctional protein that controls vascular integrity. A decrease in VE-cadherin expression is associated with tumor pathology. We developed an oligonucleotide-based inhibitor (CD5-2), which disrupted the interaction of VE-cadherin with its regulator miR-27a, resulting in increased VE-cadherin expression. Administration of CD5-2 in tumor-bearing mice enhanced expression of VE-cadherin in tumor endothelium, activating TIE-2 and tight junction pathways and normalizing vessel structure and function. CD5-2 administration also enhanced tumor-specific T-cell infiltration and spatially redistributed CD8+ T cells within the tumor parenchyma. Finally, CD5-2 treatment enhanced the efficacy of anti-PD-1 blocking antibody. Our work establishes a role for VE-cadherin in T-cell infiltration in tumors and offers a preclinical proof of concept for CD5-2 as a therapeutic modifier of cancer immunotherapy via effects on the tumor vasculature. Cancer Res; 77(16); 4434-47. ©2017 AACR.


Assuntos
Caderinas/imunologia , Neoplasias do Colo/terapia , Endotélio Vascular/imunologia , Imunoterapia/métodos , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/terapia , Linfócitos T/imunologia , Animais , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/imunologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Melanoma Experimental/imunologia , Camundongos , Terapia de Alvo Molecular
8.
Small GTPases ; 5(3): 1-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25425145

RESUMO

The formation of the vascular network requires a tightly controlled balance of pro-angiogenic and stabilizing signals. Perturbation of this balance can result in dysregulated blood vessel morphogenesis and drive pathologies including cancer. Here, we have identified a novel gene, ARHGAP18, as an endogenous negative regulator of angiogenesis, limiting pro-angiogenic signaling and promoting vascular stability. Loss of ARHGAP18 promotes EC hypersprouting during zebrafish and murine retinal vessel development and enhances tumor vascularization and growth. Endogenous ARHGAP18 acts specifically on RhoC and relocalizes to the angiogenic and destabilized EC junctions in a ROCK dependent manner, where it is important in reaffirming stable EC junctions and suppressing tip cell behavior, at least partially through regulation of tip cell genes, Dll4, Flk-1 and Flt-4. These findings highlight ARHGAP18 as a specific RhoGAP to fine tune vascular morphogenesis, limiting tip cell formation and promoting junctional integrity to stabilize the angiogenic architecture.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Junções Intercelulares/metabolismo , Melanoma Experimental/irrigação sanguínea , Neovascularização Fisiológica , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Proteínas Ativadoras de GTPase/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Retina/citologia , Retina/metabolismo , Retina/patologia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
9.
J Neuroinflammation ; 6: 36, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20003262

RESUMO

The excitotoxin quinolinic acid (QUIN) is synthesized through the kynurenine pathway (KP) by activated monocyte lineage cells. QUIN is likely to play a role in the pathogenesis of several major neuroinflammatory diseases including Alzheimer's disease (AD). The presence of reactive astrocytes, astrogliosis, increased oxidative stress and inflammatory cytokines are important pathological hallmarks of AD. We assessed the stimulatory effects of QUIN at low physiological to high excitotoxic concentrations in comparison with the cytokines commonly associated with AD including IFN-gamma and TNF-alpha on primary human astrocytes. We found that QUIN induces IL-1beta expression, a key mediator in AD pathogenesis, in human astrocytes. We also explored the effect of QUIN on astrocyte morphology and functions. At low concentrations, QUIN treatment induced concomitantly a marked increase in glial fibrillary acid protein levels and reduction in vimentin levels compared to controls; features consistent with astrogliosis. At pathophysiological concentrations QUIN induced a switch between structural protein expressions in a dose dependent manner, increasing VIM and concomitantly decreasing GFAP expression. Glutamine synthetase (GS) activity was used as a functional metabolic test for astrocytes. We found a significant dose-dependent reduction in GS activity following QUIN treatment. All together, this study showed that QUIN is an important factor for astroglial activation, dysregulation and cell death with potential relevance to AD and other neuroinflammatory diseases.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos , Ácido Quinolínico/farmacologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proliferação de Células , Células Cultivadas , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Vimentina/genética , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA