Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Endourol ; 38(1): 30-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37850492

RESUMO

Fluorescent probes in the near-infrared (NIR) range have immense potential to improve observation of positive margins, lymph nodes, and nerves in prostatectomy. Development of fluorescent dyes and mechanisms of cellular uptake paved the way for the current emerging technologies. However, intracellular transport of fluorophores proved to be logistically challenging with respect to intraoperative deployment. Peptide-based probes with high specificity for nerves enabled broader and more rapid labeling. Key features of the ideal probe include selectivity, minimal background noise, safety, and low cost. Human neuropeptide 401 (HNP401) and oxazine-based probes perform well in these categories. As for tumor-specific labeling, prostate specific membrane antigen is relatively selective for the prostate and can be conjugated to a fluorophore. NIR spectrum emission is an ideal range for clinical imaging use, as fluorescence occurs outside the field of visible light, and tissue optical properties diverge significantly at the visible-NIR transition. Indocyanine, carbocyanine, and fluorescein derivatives are common fluorophore conjugates for the probes. Finally, to harness the power of fluorescence intraoperatively, the surgeon must look through a specialized lens. Multiphoton microscopy, optical coherence tomography, and confocal laser endomicroscopy have emerged as frontrunners in this arena. As with any evolving technology, ongoing research is expanding the applications of fluorescent intraoperative imaging in prostate surgery. Innovations in camera technology, dye selection, and image processing are refining the technique's capabilities. A core challenge of these technologies translating into the operating room relates to size and the ability to view objects at vastly different magnifications. Dual modality zoom settings are promising solutions. Furthermore, interdisciplinary collaboration between surgeons, imaging specialists, and researchers continues to drive advancements. In conclusion, fluorescent intraoperative imaging has the potential to usher in a new era of precision and safety in prostate surgery.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Prostatectomia/métodos , Próstata/diagnóstico por imagem , Próstata/cirurgia , Corantes Fluorescentes , Fluoresceína
2.
Nucl Med Rev Cent East Eur ; 25(2): 129-130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35699591

RESUMO

Prostate-specific membrane antigen (PSMA) - based radiopharmaceuticals are promising for the evaluation of PSMA-positive non-prostate cancers. In this case study, 18F-BF3-Cy3-ACUPA and 68Ga-PSMA positron emission tomography/magnetic resonance imaging (PET/MRI) were compared in a patient with metastatic colon cancer. Both 18F-BF3-Cy3-ACUPA and 68Ga-PSMA PET/MRI showed biopsy-proven metastatic left external iliac adenopathy, highlighting the feasibility of PSMA uptake in PET/MRI of metastatic nodal disease from colon cancer. Along with imaging evaluation, PSMA-based radiopharmaceuticals may also be used as a surrogate imaging tracer for potential theranostic applications using alpha or beta emitters in the context of PSMA-directed radiopharmaceutical therapy in advanced and progressive colorectal cancer.


Assuntos
Neoplasias do Colo , Neoplasias da Próstata , Neoplasias do Colo/diagnóstico por imagem , Isótopos de Gálio , Radioisótopos de Gálio , Glutaratos , Humanos , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos
3.
J Mater Chem B ; 10(3): 477, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34989758

RESUMO

Correction for 'Facile synthesis of near-infrared bodipy by donor engineering for in vivo tumor targeted dual-modal imaging' by Feifei An et al., J. Mater. Chem. B, 2021, 9, 9308-9315, DOI: 10.1039/D1TB01883C.

4.
J Mater Chem B ; 9(45): 9308-9315, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34714318

RESUMO

Bodipy is one of the most popular dyes for bioimaging, however, a complicated synthetic protocol is needed to create and isolate ideal near-infrared (NIR) emissive Bodipy derivatives for optical bioimaging. It is noticed that the donor species impact the wavelength when the π-conjugation system of green light emissive Bodipy is elongated via a one-step reaction. Herein, several Bodipy dyes bearing different common donors are synthesized. Their optical properties confirm that both absorption and emission peaks of the synthesized Bodipy could be tuned to NIR wavelength by using stronger donors via a facile reaction. The synthesized monocarboxyl Bodipy could conjugate with aminated PEG to yield an amphiphilic polymer, which further self-assembles into a NIR nanoparticle (NP). The NIR NP exhibits preferential tumor accumulation via the enhanced permeation and retention (EPR) effect, making it useful for tumor diagnosis by both fluorescence imaging and photoacoustic tomography.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico por imagem , Compostos de Boro/síntese química , Engenharia Química , Neoplasias/diagnóstico por imagem , Células A549 , Animais , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem
5.
Acta Radiol Open ; 10(5): 20584601211022509, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34104479

RESUMO

Targeted radionuclide therapy has emerged as a promising and potentially curative strategy for high-grade prostate cancer. However, limited data are available on efficacy, quality of life, and pretherapeutic biomarkers. Here, we highlight the case of a patient with prostate-specific membrane antigen (PSMA)-positive metastatic castrate-resistant prostate cancer who displayed complete response to 225Ac-PSMA-617 after having been resistant to standard-of-care therapy, then initially partially responsive but later resistant to subsequent immunotherapy, and resistant to successive 177Lu-PSMA-617. In addition, the patient's baseline germline mutation likely predisposed him to more aggressive disease.

7.
Clin Genitourin Cancer ; 19(5): 405-416, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33879400

RESUMO

BACKGROUND: A first-in-human study of [18F]-BF3-Cy3-ACUPA, a small-molecule imaging agent that can be unimolecularly both positron emitting and fluorescent, is conducted to determine its safety, biodistribution, radiation dosimetry, feasibility in tumor detection by preoperative positron emission tomography (PET), as well as its intraoperative fluorescence imaging utility in patients with prostate-specific membrane antigen positive (PSMA+) tumors. METHODS: Ten patients aged 66 ± 7 years received a 6.5 ± 3.2 mCi intravenous injection of [18F]-BF3-Cy3-ACUPA and underwent PET/computed tomography (CT) imaging. Radiation dosimetry of [18F]-BF3-Cy3-ACUPA, normal organ biodistribution, and tumor uptakes were examined. Two patients were prescheduled for radical prostatectomy (RP) with extended pelvic lymphadenectomy approximately 24 hours following [18F]-BF3-Cy3-ACUPA injection and imaging. Without reinjection, intraoperative fluorescence imaging was performed on freshly excised tissue during RP. Frozen sections of excised tissue during RP were submitted for confirmatory histopathology and multiphoton fluorescence and brightfield microscopy. RESULTS: Absorbed doses by organs including the kidneys and salivary glands were similar to 68Ga-PSMA-11 imaging. [18F]-BF3-Cy3-ACUPA physiologic radiotracer accumulation and urinary/biliary excretion closely resembled the distribution of other published PSMA tracers including [18F]-JK-PSMA-7, [18F]-PSMA-1007, [18F]-DCFPyL, and [18F]-DCFBC. 19F-BF3-Cy3-ACUPA was retained in PSMA+ cancer tissues in patients for at least 24 hours, allowing for intraoperative fluorescence assessment of the prostate and of the embedded prostate cancer without contrast reinjection. After 24 hours, the imaging agent mostly decayed or cleared from the blood pool. Preoperative PET and fluorescence imaging findings were confirmed with final histopathology and multiphoton microscopy. CONCLUSION: Our first-in-human results demonstrate that [18F]-BF3-Cy3-ACUPA is safe and feasible in humans. Larger trials with this PET tracer are expected to further define its capabilities and its clinical role in the management of PSMA+ tumors, especially in prostate cancer.


Assuntos
Próstata , Neoplasias da Próstata , Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Humanos , Masculino , Imagem Óptica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos , Distribuição Tecidual
8.
Biomaterials ; 269: 120630, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33395580

RESUMO

Adoptive cell transfer of targeted chimeric antigen receptor (CAR) T cells has emerged as a highly promising cancer therapy. The pharmacodynamic action or CAR T cells is closely related to their pharmacokinetic profile; because of this as well as the risk of non-specific action, it is important to monitor their biodistribution and fate following infusion. To this end, we developed a dual-modal PET/near infrared fluorescent (NIRF) nanoparticle-based imaging agent for non-genomic labeling of human CAR T cells. Since the PET/NIRF nanoparticles did not affect cell viability or cytotoxic functionality and enabled long-term whole-body CAR T cell tracking using PET and NIRF in an ovarian peritoneal carcinomatosis model, this platform is a viable imaging technology to be applied in other cancer models.


Assuntos
Rastreamento de Células , Imunoterapia Adotiva , Linhagem Celular Tumoral , Humanos , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
9.
Sci Adv ; 6(30): eabb4105, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832670

RESUMO

Efforts at altering the dismal prognosis of pediatric midline gliomas focus on direct delivery strategies like convection-enhanced delivery (CED), where a cannula is implanted into tumor. Successful CED treatments require confirmation of tumor coverage, dosimetry, and longitudinal in vivo pharmacokinetic monitoring. These properties would be best determined clinically with image-guided dosimetry using theranostic agents. In this study, we combine CED with novel, molecular-grade positron emission tomography (PET) imaging and show how PETobinostat, a novel PET-imageable HDAC inhibitor, is effective against DIPG models. PET data reveal that CED has significant mouse-to-mouse variability; imaging is used to modulate CED infusions to maximize tumor saturation. The use of PET-guided CED results in survival prolongation in mouse models; imaging shows the need of CED to achieve high brain concentrations. This work demonstrates how personalized image-guided drug delivery may be useful in potentiating CED-based treatment algorithms and supports a foundation for clinical translation of PETobinostat.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Animais , Neoplasias do Tronco Encefálico/patologia , Convecção , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Camundongos , Tomografia por Emissão de Pósitrons
10.
J Med Chem ; 63(21): 12693-12706, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787084

RESUMO

The ß-diketone moiety is commonly present in many anticancer drugs, antibiotics, and natural products. We describe a general method for radiolabeling ß-diketone-bearing molecules with fluoride-18. Radiolabeling was carried out via 18F-19F isotopic exchange on nonradioactive difluoro-dioxaborinins, which were generated by minimally modifying the ß-diketone as a difluoroborate. Radiochemistry was one-step, rapid (<10 min), and high-yielding (>80%) and proceeded at room temperature to accommodate the half-life of F-18 (t1/2 = 110 min). High molar activities (7.4 Ci/µmol) were achieved with relatively low starting activities (16.4 mCi). It was found that substituents affected both the solvolytic stability and fluorescence properties of difluoro-dioxaborinins. An F-18 radiolabeled difluoro-dioxaborinin probe that was simultaneously fluorescent showed sufficient stability for in vivo positron emission tomography (PET)/fluorescence imaging in mice, rabbits, and patients. These findings will guide the design of probes with specific PET/fluorescence properties; the development of new PET/fluorescence dual-modality reporters; and accurate in vivo tracking of ß-diketone molecules.


Assuntos
Boro/química , Flúor/química , Cetonas/química , Compostos Radiofarmacêuticos/química , Animais , Flúor/metabolismo , Radioisótopos de Flúor/química , Radioisótopos de Flúor/metabolismo , Meia-Vida , Marcação por Isótopo , Imageamento por Ressonância Magnética , Camundongos , Tomografia por Emissão de Pósitrons , Coelhos , Compostos Radiofarmacêuticos/metabolismo , Imagem Corporal Total
11.
Eur J Med Chem ; 195: 112274, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259703

RESUMO

Hypoxia, a common characteristic in solid tumors, is found in phenotypically aggressive cancers that display resistance to typical cancer interventions. Due to its important role in tumor progression, tumor hypoxia has been considered as a primary target for cancer diagnosis and treatment. An advantage of hypoxia-activated nanomedicines is that they are inactive in normoxic cells. In hypoxic tumor tissues and cells, these nanomedicines undergo reduction by activated enzymes (usually through 1 or 2 electron oxidoreductases) to produce cytotoxic substances. In this review, we will focus on approaches to design nanomedicines that take advantage of tumor hypoxia. These approaches include: i) inhibitors of hypoxia-associated signaling pathways; ii) prodrugs activated by hypoxia; iii) nanocarriers responsive to hypoxia, and iv) bacteria mediated hypoxia targeting therapy. These strategies have guided and will continue to guide nanoparticle design in the near future. These strategies have the potential to overcome tumor heterogeneity to improve the efficiency of radiotherapy, chemotherapy and diagnosis.


Assuntos
Nanomedicina/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Hipóxia Tumoral/efeitos dos fármacos , Animais , Humanos , Neoplasias/metabolismo , Pró-Fármacos/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Neuro Oncol ; 22(10): 1495-1504, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32301996

RESUMO

BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is a highly lethal malignancy that occurs predominantly in children. DIPG is inoperable and post-diagnosis survival is less than 1 year, as conventional chemotherapy is ineffective. The intact blood-brain barrier (BBB) blocks drugs from entering the brain. Convection-enhanced delivery (CED) is a direct infusion technique delivering drugs to the brain, but it suffers from rapid drug clearance. Our goal is to overcome the delivery barrier via CED and maintain a therapeutic concentration at the glioma site with a payload-adjustable peptide nanofiber precursor (NFP) that displays a prolonged retention property as a drug carrier. METHODS: The post-CED retention of 89Zr-NFP was determined in real time using PET/CT imaging. Emtansine (DM1), a microtubule inhibitor, was conjugated to NFP. The cytotoxicity of the resulting DM1-NFP was tested against patient-derived DIPG cell lines. The therapeutic efficacy was evaluated in animals bearing orthotopic DIPG, according to glioma growth (measured using bioluminescence imaging) and the long-term survival. RESULTS: DM1-NFP demonstrated potency against multiple glioma cell lines. The half-maximal inhibitory concentration values were in the nanomolar range. NFP remained at the infusion site (pons) for weeks, with a clearance half-life of 60 days. DM1-NFP inhibited glioma progression in animals, and offered a survival benefit (median survival of 62 days) compared with the untreated controls (28 days) and DM1-treated animal group (26 days). CONCLUSIONS: CED, in combination with DM1-NFP, complementarily functions to bypass the BBB, prolong drug retention at the fusion site, and maintain an effective therapeutic effect against DIPG to improve treatment outcome.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Nanofibras , Animais , Neoplasias do Tronco Encefálico/tratamento farmacológico , Criança , Convecção , Humanos , Peptídeos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos , Zircônio
13.
Mater Sci Eng C Mater Biol Appl ; 111: 110762, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279764

RESUMO

Long-term, in vivo, fluorescent cell tracking probes are useful for understanding complex cellular processes including tissue regeneration, communication, development, invasion, and cancer metastasis. A near-infrared fluorescent, water-soluble probe is particularly important for studying these biological events and processes. Herein, a lysosome specific, near-infrared Bodipy probe with increased fluorescent intensity in the acidic, lysosome environment is reported. This Bodipy probe is packaged in a nanoparticle using DSPE-PEG2000. The resulting nanoparticle is intravenously delivered to a tumor xenograft, where the fluorescent Bodipy becomes useful for non-invasive, long-term, in vivo fluorescent tumor imaging for periods greater than 36 days. These long-term, in vitro and in vitro tracking data indicate that the described Bodipy nanoparticles hold great potential for monitoring biological processes.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Lisossomos/química , Neoplasias/diagnóstico por imagem , Células A549 , Animais , Movimento Celular/efeitos dos fármacos , Corantes Fluorescentes/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Camundongos , Camundongos Nus , Microscopia Confocal , Nanopartículas/química , Neoplasias/veterinária , Imagem Óptica , Polietilenoglicóis/química , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int J Biol Macromol ; 153: 100-106, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32105698

RESUMO

Nanoparticles are excellent imaging agents for cancer, but variability in chemical structure, racemic mixtures, and addition of heavy metals hinders FDA approval in the United States. We developed a small ultra-red fluorescent protein, named smURFP, to have optical properties similar to the small-molecule Cy5, a heptamethine subclass of cyanine dyes (Ex/Em = 642/670 nm). smURFP has a fluorescence quantum yield of 18% and expresses so well in E. coli, that gram quantities of fluorescent protein are purified from cultures in the laboratory. In this research, the fluorescent protein smURFP was combined with bovine serum albumin into fluorescent protein nanoparticles. These nanoparticles are fluorescent with a quantum yield of 17% and 12-14 nm in diameter. The far-red fluorescent protein nanoparticles noninvasively image tumors in living mice via the enhanced permeation and retention (EPR) mechanism. This manuscript describes the use of a new fluorescent protein nanoparticle for in vivo fluorescent imaging. This protein nanoparticle core should prove useful as a biomacromolecular scaffold, which could bear extended chemical modifications for studies, such as the in vivo imaging of fluorescent protein nanoparticles targeted to primary and metastatic cancer, theranostic treatment, and/or dual-modality imaging with positron emission tomography for entire human imaging.


Assuntos
Corantes Fluorescentes , Proteínas Luminescentes , Neoplasias Pulmonares , Nanopartículas/química , Imagem Óptica , Células A549 , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/farmacologia , Xenoenxertos , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/farmacocinética , Proteínas Luminescentes/farmacologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Proteína Vermelha Fluorescente
15.
Small ; 15(38): e1903121, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31379108

RESUMO

The combination of diagnostic and therapeutic functions in a single theranostic nanoagent generally requires the integration of multi-ingredients. Herein, a cytotoxic near-infrared (NIR) dye (IR-797) and its nanoassembly are reported for multifunctional cancer theranostics. The hydrophobic IR-797 molecules are self-assembled into nanoparticles, which are further modified with an amphiphilic polymer (C18PMH-PEG5000) on the surface. The prepared PEG-IR-797 nanoparticles (PEG-IR-797 NPs) possess inherent cytotoxicity from the IR-797 dye and work as a chemotherapeutic drug which induces apoptosis of cancer cells. The IR-797 NPs are found to have an ultrahigh mass extinction coefficient (444.3 L g-1 cm-1 at 797 nm and 385.9 L g-1 cm-1 at 808 nm) beyond all reported organic nanomaterials (<40 L g-1 cm-1 ) for superior photothermal therapy (PTT). In addition, IR-797 shows some aggregation-induced-emission (AIE) properties. Combining the merits of good NIR absorption, high photothermal energy conversion efficiency, and AIE, makes the PEG-IR-797 NPs useful for multimodal NIR AIE fluorescence, photoacoustic, and thermal imaging-guided therapy. The research exhibits the possibility of using a single ingredient and entity to perform multimodal NIR fluorescence, photoacoustic, and thermal imaging-guided chemo-/photothermal combination therapy, which may trigger wide interest from the fields of nanomedicine and medicinal chemistry to explore multifunctional theranostic organic molecules.


Assuntos
Antineoplásicos/química , Nanomedicina Teranóstica/métodos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Técnicas Fotoacústicas/métodos , Fotoquimioterapia/métodos , Polímeros/química
17.
Mol Pharm ; 16(8): 3636-3646, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31290330

RESUMO

The small molecule fluorescein is commonly used to guide the repair of cerebral spinal fluid leaks (CSFLs) in the clinic. We modified fluorescein so that it is also visible by positron emission tomography (PET). This probe was used to quantitatively track the fast distribution of small molecules in the CSF of rats. We tested this probe in models relevant to the clinical diagnosis and treatment of central nervous system (CNS) diseases that affect CSF flow. In this study, fluorescein was radiolabeled with fluorine-18 to produce Fc-AMBF3. [18/19F]-Fc-AMBF3 was introduced at trace quantities (13.2 nmols, 100 µCi) intrathecally (between L5 and L6) in rats to observe the dynamic distribution and clearance of small molecules in the CSF by both [18F]-PET and fluorescence (FL) imaging. Murine models were used to demonstrate the following utilities of Fc-AMBF3: (1) utility in monitoring the spontaneous CSFL repair of a compression fracture of the cribriform plate and (2) utility in quantifying CSF flow velocity during neurosurgical lumboperitoneal shunt placement. Fc-AMBF3 clearly delineated CSF-containing volumes based on noninvasive PET imaging and in ex vivo FL histology. In vivo morbidity (n = 16 rats, <2.7 mg/kg, 77 times the PET dose) was not observed. The clearance of the contrast agent from the CNS was rapid and quantitative (t1/2 = 33.8 ± 0.6 min by FL and t1/2 = 26.0 ± 0.5 min by PET). Fc-AMBF3 was cleared from the CSF through the vasculature and/or lymphatic system that supplies the cribriform plate and the temporal bone. Fc-AMBF3 can be used to diagnose CSFLs, image CSFL repair, and determine the CSF flow velocity in the CNS or through lumboperitoneal shunts by PET/FL imaging. In conclusion, Fc-AMBF3 PET imaging has been demonstrated to safely and dynamically quantitate CSF flow, diagnose fistulas associated with the CSF space, and approximate the clearance of small molecules in the CSF.


Assuntos
Doenças do Sistema Nervoso Central/diagnóstico por imagem , Vazamento de Líquido Cefalorraquidiano/diagnóstico por imagem , Fluoresceína/farmacocinética , Corantes Fluorescentes/farmacocinética , Radioisótopos de Flúor , Compostos Radiofarmacêuticos/farmacocinética , Animais , Linhagem Celular Tumoral , Doenças do Sistema Nervoso Central/cirurgia , Líquido Cefalorraquidiano/diagnóstico por imagem , Vazamento de Líquido Cefalorraquidiano/cirurgia , Derivações do Líquido Cefalorraquidiano/instrumentação , Derivações do Líquido Cefalorraquidiano/métodos , Modelos Animais de Doenças , Fluoresceína/administração & dosagem , Fluoresceína/química , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Humanos , Injeções Espinhais , Masculino , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Ratos , Distribuição Tecidual , Testes de Toxicidade , Cirurgia Vídeoassistida/métodos
18.
ACS Chem Biol ; 14(7): 1449-1459, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31120734

RESUMO

Clinical trials involving genome-edited cells are growing in popularity, where CAR-T immunotherapy and CRISPR/Cas9 editing are more recognized strategies. Genetic reporters are needed to localize the molecular events inside these cells in patients. Specifically, a nonimmunogenic genetic reporter is urgently needed as current reporters are immunogenic due to derivation from nonhuman sources. Prostate-specific membrane antigen (PSMA) is potentially nonimmunogenic due to its natural, low-level expression in select tissues (self-MHC display). PSMA overexpression on human prostate adenocarcinoma is also visible with excellent contrast. We exploit these properties in a transduced, two-component, Human-Derived, Genetic, Positron-emitting, and Fluorescent (HD-GPF) reporter system. Mechanistically analogous to the luciferase and luciferin reporter, PSMA is genetically encoded into non-PSMA expressing 8505C cells and tracked with ACUPA-Cy3-BF3, a single, systemically injected small molecule that delivers positron emitting fluoride (18F) and a fluorophore (Cy3) to report on cells expressing PSMA. PSMA-lentivirus transduced tissues become visible by Cy3 fluorescence, [18F]-positron emission tomography (PET), and γ-scintillated biodistribution. HD-GPF fluorescence is visible at subcellular resolution, while a reduced PET background is achieved in vivo, due to rapid ACUPA-Cy3-BF3 renal excretion. Co-transduction with luciferase and GFP show specific advantages over popular genetic reporters in advanced murine models including, a "mosaic" model of solid-tumor intratumoral heterogeneity and a survival model for observing postsurgical recurrence. We report an advanced genetic reporter that tracks genetically modified cells in entire animals and with subcellular resolution with PET and fluorescence, respectively. This reporter system is potentially nonimmunogenic and will therefore be useful in human studies. PSMA is a biomarker of prostate adenocarcinoma and ACUPA-Cy3-BF3 potential in radical prostatectomy is demonstrated.


Assuntos
Antígenos de Superfície/análise , Carbocianinas/análise , Corantes Fluorescentes/análise , Genes Reporter , Glutamato Carboxipeptidase II/análise , Neoplasias da Próstata/genética , Animais , Antígenos de Superfície/genética , Linhagem Celular Tumoral , Rastreamento de Células/métodos , Glutamato Carboxipeptidase II/genética , Humanos , Masculino , Camundongos , Modelos Moleculares , Imagem Óptica/métodos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem
19.
ACS Chem Neurosci ; 10(5): 2287-2298, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30838861

RESUMO

The blood-brain barrier (BBB) represents a major obstacle in delivering therapeutics to brain lesions. Convection-enhanced delivery (CED), a method that bypasses the BBB through direct, cannula-mediated drug delivery, is one solution to maintaining increased, effective drug concentration at these lesions. CED was recently proven safe in a phase I clinical trial against diffuse intrinsic pontine glioma (DIPG), a childhood cancer. Unfortunately, the exact relationship between drug size, charge, and pharmacokinetic behavior in the brain parenchyma are difficult to observe in vivo. PET imaging of CED-delivered agents allows us to determine these relationships. In this study, we label different modifications of the PDGFRA inhibitor dasatinib with fluorine-18 or via a nanofiber-zirconium-89 system so that the effect of drug structure on post-CED behavior can accurately be tracked in vivo, via PET. Relatively unchanged bioactivity is confirmed in patient- and animal-model-derived cell lines of DIPG. In naïve mice, significant individual variability in CED drug clearance is observed, highlighting a need to accurately understand drug behavior during clinical translation. Generally, the half-life for a drug to clear from a CED site is short for low molecular weight dasatinib analogs that bare different charge; 1-3 (1, 32.2 min (95% CI: 27.7-37.8), 2, 44.8 min (27.3-80.8), and 3, 71.7 min (48.6-127.6) minutes) and is much longer for a dasatinib-nanofiber conjugate, 5, (42.8-57.0 days). Positron emission tomography allows us to accurately measure the effect of drug size and charge in monitoring real-time drug behavior in the brain parenchyma of live specimens.


Assuntos
Antineoplásicos/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Dasatinibe/farmacocinética , Animais , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/metabolismo , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Corpo Estriado/metabolismo , Dasatinibe/uso terapêutico , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/metabolismo , Glioma Pontino Intrínseco Difuso/patologia , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Estrutura Molecular , Distribuição Tecidual
20.
Adv Funct Mater ; 28(44)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30505260

RESUMO

An effective tumoral delivery system should show minimal removal by the reticuloendothelial system (RES), promote tumor uptake and penetration, and minimize on-site clearance. This study reports the design and synthesis of advanced self-assembling peptide nanofiber precursor (NFP) analogues. The peptidic nature of NFP offers the design flexibility for on-demand customization with imaging agents and surface charges while maintaining a set size, allowing for real-time monitoring of kinetic and dynamic tumoral delivery by multimodal fluorescence/positron emission tomography/computed tomography (fluo/PET/CT) imaging, for formulation optimization. The optimized glutathione (GSH)-NFP displays a reduced capture by the RES as well as excellent tumor targeting and tissue invasion properties compared to naive NFP. Inside a tumor, GSH-NFP can structurally transform into ten times larger interfibril networks, serving as in situ depot that promotes weeks-long local retention. This nanofiber, which can further be designed to release the active pharmacophores within a tumor microenvironment, displays a superior therapeutic efficacy for inhibiting disease progression and improving the survival of animals bearing triple-negative breast cancer tumors compared to free drug and liposome formulation of the drug, in addition to a favorable toxicity profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA