Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Histochem ; 121(2): 143-150, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30497687

RESUMO

The mud crab, Scylla olivacea, is a high value economic marine animal in Thailand. However, collection of these crabs from natural habitat for local consumption and export has caused rapid population decline. Hence, aquaculture of this species is required and to this measure understanding of endocrine control of their reproduction must be understood. Egg laying hormone (ELH) is a neuropeptide synthesized by the bag cells (neurons) in the abdominal ganglia of Aplysia gastropods. It plays a critical role in controlling egg production and laying in gastropods, and its possible homolog (ELH-like peptide) was reported in the neural and ovarian tissues of prawns and recently in female reproductive tract of the blue swimming crab, Portunus pelagicus. In this study, we have studied the histology of the male reproductive tract in Scylla olivacea which are comprised of anterior testis, posterior testis, early proximal spermatic duct (ePSD), proximal spermatic duct (PSD), middle spermatic duct (MSD) and distal spermatic duct (DSD), by immunohistochemistry, detected an abalone ELH- immunoreactivity (aELH-ir) in epithelium of ducts in posterior testis and epithelium of all parts of spermatic duct. Furthermore, we could detect aELH-ir in neurons of cluster 9, 11, olfactory neuropil (ON) in the brain and in the small neurons located between the third and the fourth thoracic neuropils (T3-T4) and between the fourth and the fifth thoracic neuropils (T4-T5) of thoracic ganglia. Thus, the presence of aELH in male S. olivacea was designated the role of female egg laying behavior in the male mud crab.


Assuntos
Braquiúros/metabolismo , Sistema Nervoso Central/metabolismo , Hormônios de Invertebrado/metabolismo , Hormônios Peptídicos/metabolismo , Reprodução/fisiologia , Testículo/metabolismo , Animais , Gastrópodes/metabolismo , Imuno-Histoquímica/métodos , Masculino , Neurônios/metabolismo
2.
Acta Trop ; 136: 1-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24736227

RESUMO

Monoclonal antibodies (MoAbs) against a recombinant cathepsin L1 of Fasciola gigantica (rFgCatL1) were produced in vitro by fusion of BALB/c mice spleen cells immunized with rFgCatL1 and mouse myeloma cells. Reactivity and specificity of these MoAbs were evaluated by indirect ELISA and immunoblotting techniques. Seven MoAb clones were selected from the stable hybridoma clones, namely 1E10, 1F5, 3D11, 4B10, 4D3, 4E3 and 5E7. Clones 1E10, 1F5 and 3D11 were IgM, whereas clones 4B10, 4D3, 4E3 and 5E7 were IgG1. All MoAbs had kappa light chain isotypes. All MoAbs reacted with rCatL1 at molecular weight (MW) 30kDa and with the native CatL1 at MW 27kDa in whole body (WB) extracts of metacercariae (Met), newly excysted juveniles (NEJ), 1, 3, 5-week-old juveniles (Ju), adult WB and adult excretory-secretory (ES) fractions, but not with adult tegumental antigens (TA). All of these MoAbs showed no cross-reactions with antigens of other parasites commonly found in ruminants and human, including Paramphistomum cervi, Eurytrema pancreaticum, Gigantocotyle explanatum, Schistosoma spindale, Schistosoma mansoni, Moniezia benedeni, Avitellina centripunctata, Trichuris sp., Haemonchus placei and Setaria labiato-papillosa. Localization of CatL1 in each developmental stages of F. gigantica by immunoperoxidase technique, using these MoAbs as probes, indicated that CatL1 was present at high concentration in the caecal epithelium and caecal lumen of metacercariae, NEJ, 1, 3, 5-week-old juveniles and adult fluke. This finding indicated that CatL1 is a copiously expressed parasite protein that is released into the ES, thus CatL1 and its MoAb could be a good candidate for immunodiagnosis of fasciolosis in ruminant and human.


Assuntos
Anticorpos Monoclonais/imunologia , Catepsinas/imunologia , Fasciola/metabolismo , Proteínas Recombinantes/imunologia , Animais , Especificidade de Anticorpos , Catepsinas/metabolismo , Fasciola/imunologia , Humanos , Camundongos
3.
Microsc Res Tech ; 77(2): 110-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24446352

RESUMO

Gonadotropin releasing hormone (GnRH) is a peptide that is conserved in both vertebrate and invertebrate species. In this study, we have demonstrated the distribution pattern of two isoforms of GnRH-like peptides in the neural ganglia and testis of reproductively mature male abalone, H. asinina, by immunohistochemistry and whole mount immunofluorescence. We found octopus (oct) GnRH and tunicate-I (t) GnRH-I immunoreactivities (ir) in type 1 neurosecretory cells (NS1) and they were expressed mostly within the ventral horn of the cerebral ganglion, whereas in pleuropedal ganglia they were localized primarily in the dorsal horn. Furthermore, tGnRH-I-ir were strongly detected in fibers at the caudal part of the cerebral ganglia and both ventral and dorsal horns of the pleuropedal ganglia. In the testis, only octGnRH-ir was found primarily in the granulated cell and central capillaries within the trabeculae. These results suggest that multiple GnRH-like peptides are present in the neural ganglia which could be the principal source of their production, whereas GnRH may also be synthesized locally in the testis and act as the paracrine control of testicular maturation.


Assuntos
Gastrópodes/química , Hormônio Liberador de Gonadotropina/análise , Imuno-Histoquímica/métodos , Animais , Gânglios/química , Masculino , Testículo/química
4.
Gen Comp Endocrinol ; 193: 10-8, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23867230

RESUMO

Neurotransmitters and neurohormones are agents that control gonad maturation in decapod crustaceans. Of these, serotonin (5-HT) and dopamine (DA) are neurotransmitters with known antagonist roles in female reproduction, whilst gonadotropin-releasing hormones (GnRHs) and corazonin (Crz) are neurohormones that exercise both positive and negative controls in some invertebrates. However, the effects of these agents on the androgenic gland (AG), which controls testicular maturation and male sex development in decapods, via insulin-like androgenic gland hormone (IAG), are unknown. Therefore, we set out to assay the effects of 5-HT, DA, l-GnRH-III, oct-GnRH and Crz, on the AG of small male Macrobrachium rosenbergii (Mr), using histological studies, a BrdU proliferative cell assay, immunofluorescence of Mr-IAG, and ELISA of Mr-IAG. The results showed stimulatory effects by 5-HT and l-GnRH-III through significant increases in AG size, proliferation of AG cells, and Mr-IAG production (P<0.05). In contrast, DA and Crz caused inhibitory effects on the AG through significant decreases in AG size, proliferation of AG cells, and Mr-IAG production (P<0.05). Moreover, the prawns treated with Crz died before day 16 of the experimental period. We propose that 5-HT and certain GnRHs can be now used to stimulate reproduction in male M. rosenbergii, as they induce increases in AG and testicular size, IAG production, and spermatogenesis. The mechanisms by which these occur are part of our on-going research.


Assuntos
Dopamina/farmacologia , Glândulas Endócrinas/efeitos dos fármacos , Glândulas Endócrinas/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Proteínas de Insetos/farmacologia , Neuropeptídeos/farmacologia , Palaemonidae/efeitos dos fármacos , Palaemonidae/metabolismo , Serotonina/farmacologia , Androgênios/metabolismo , Animais , Feminino , Masculino
5.
Cell Tissue Res ; 343(3): 579-93, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21243376

RESUMO

We used antibodies against octopus gonadotropin-releasing hormone (octGnRH) and tunicate GnRH (tGnRH-I) in order to investigate the existence and distribution of GnRH-like peptides in the central nervous system (CNS) and in the ovary during various stages of the ovarian cycle of the white shrimp, Litopenaeus vannamei. OctGnRH-immunoreactive and tGnRH-I-immunoreactive neurons and fibers were present in several regions of the supraesophageal ganglion (brain), subesophageal ganglion (SEG), thoracic ganglia, and abdominal ganglia. In the brain, both octGnRH immunoreactivity (ir) and tGnRH-I-ir were detected in neurons of clusters 6, 11, 17, and associated fibers, and the anterior medial protocerebral, posterior medial protocerebral, olfactory, and tegumentary neuropils. In the SEG and thoracic ganglia, octGnRH-immunoreactive and tGnRH-I-immunoreactive neurons and fibers were present in dorsolateral and ventromedial cell clusters and in surrounding fibers. Only immunoreactive fibers were detected in the abdominal ganglia. In the ovary, both octGnRH and tGnRH-I were detected at medium intensity in the cytoplasm of early step oocytes (Oc2) and, at high intensity, in Oc3. Furthermore, octGnRH-ir and tGnRH-I-ir were intense in follicular cells surrounding Oc2 and Oc3. The presence of GnRH-ir in the CNS and ovary indicates that GnRH-like peptides occur in the white shrimp, and that GnRHs are involved in the reproductive process, especially ovarian maturation and the differentiation of oocytes, as reported in other species.


Assuntos
Sistema Nervoso Central/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Ovário/metabolismo , Penaeidae/anatomia & histologia , Penaeidae/metabolismo , Peptídeos/metabolismo , Animais , Anticorpos/metabolismo , Sistema Nervoso Central/citologia , Feminino , Imuno-Histoquímica , Ovário/citologia , Isoformas de Proteínas/metabolismo , Distribuição Tecidual
6.
Acta Histochem ; 112(6): 557-66, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19604545

RESUMO

Gonadotropin-releasing hormone (GnRH) is a neuropeptide that is conserved in both vertebrate and invertebrate species. In this study, we have demonstrated the presence and distribution of two isoforms of GnRH-like peptides in neural ganglia and ovary of reproductively mature female abalone, Haliotis asinina, using immunohistochemistry. We found significant immunoreactivities (ir) of anti-lamprey(l) GnRH-III and anti-tunicate(t) GnRH, but with variation of labeling intensity by each anti-GnRH type. lGnRH-III-ir was detected in numerous type 1 neurosecretory cells (NS1) throughout the cerebral and pleuropedal ganglia, whereas tGnRH-I-ir was detected in only a few NS1 cells in the dorsal region of cerebral and pleuropedal ganglia. In addition, a small number of type 2 neurosecretory cells (NS2) in cerebral ganglion showed lGnRH-III-ir. Long nerve fibers in the neuropil of ventral regions of the cerebral and pluropedal ganglia showed strong tGnRH-I-ir. In the ovary, lGnRH-III-ir was found primarily in oogonia and stage I oocytes, whereas tGnRH-ir was observed in stage I oocytes and some stage II oocytes. These results indicate that GnRH produced in neural ganglia may act in neural signaling. Alternatively, GnRH may also be synthesized locally in the ovary where it could induce oocyte development.


Assuntos
Gânglios dos Invertebrados/química , Gastrópodes/química , Hormônio Liberador de Gonadotropina/análise , Ovário/química , Animais , Feminino , Hormônio Liberador de Gonadotropina/biossíntese , Hormônio Liberador de Gonadotropina/imunologia , Imuno-Histoquímica , Isoformas de Proteínas/análise , Isoformas de Proteínas/imunologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA