Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675071

RESUMO

Kunitz domain-containing proteins are ubiquitous serine protease inhibitors with promising therapeutic potential. They target key proteases involved in major cellular processes such as inflammation or hemostasis through competitive inhibition in a substrate-like manner. Protease inhibitors from the Kunitz superfamily have a low molecular weight (18-24 kDa) and are characterized by the presence of one or more Kunitz motifs consisting of α-helices and antiparallel ß-sheets stabilized by three disulfide bonds. Kunitz-type inhibitors are an important fraction of the protease inhibitors found in tick saliva. Their roles in inhibiting and/or suppressing host homeostatic responses continue to be shown to be additive or synergistic with other protease inhibitors such as cystatins or serpins, ultimately mediating successful blood feeding for the tick. In this review, we discuss the biochemical features of tick salivary Kunitz-type protease inhibitors. We focus on their various effects on host hemostasis and immunity at the molecular and cellular level and their potential therapeutic applications. In doing so, we highlight that their pharmacological properties can be exploited for the development of novel therapies and vaccines.


Assuntos
Cistatinas , Serpinas , Carrapatos , Animais , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Inibidores de Serina Proteinase/metabolismo , Serpinas/metabolismo , Saliva/metabolismo , Cistatinas/metabolismo
2.
Mol Cell Endocrinol ; 561: 111827, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36494014

RESUMO

AIM: In this study, we investigated how platelets and aorta contribute to the creation and maintenance of a prothrombotic state in an experimental model of postmenopausal hypertension in ovariectomized rats. METHODS: Bilateral ovariectomy was performed in both 14-week-old female spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats. The animals were kept in phytoestrogen free diet. Vascular parameters, platelet, coagulation and aortic prothrombotic functions and mechanisms were assessed. RESULTS: Exacerbated platelet aggregation was observed in both SHR and WKY animals after ovariectomy. The mechanism was related to aortic COX2 downregulation and reduction in AMP, ADP, and ATP hydrolysis in serum and platelets. A procoagulant potential was observed in plasma from ovariectomized rats and this was confirmed by kallikrein and factor Xa generation in aortic rings. Aortic rings derived from ovariectomized SHR presented a greater thrombin generation capacity compared to equivalent rings from WKY animals. The mechanism involved tissue factor and PAR-1 upregulation as well as an increase in extrinsic coagulation and fibrinolysis markers in aorta and platelets. Aortic smooth muscle cells pre-treated with a plasma pool derived from estrogen-depleted animals developed a procoagulant profile with tissue factor upregulation. This procoagulant profile was dependent on inflammatory signalling, since NFκB inhibition attenuated the procoagulant activity and tissue factor expression. CONCLUSIONS: A prothrombotic phenotype was observed in both WKY and SHR ovariectomized rats being associated with platelet hyperreactivity and tissue factor upregulation in aorta and platelets. The mechanism involves proinflammatory signalling that supports greater thrombin generation in aorta and vascular smooth muscle cells.


Assuntos
Hipertensão , Trombina , Ratos , Feminino , Animais , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Trombina/metabolismo , Trombina/farmacologia , Tromboplastina , Hipertensão/metabolismo , Aorta , Estrogênios
3.
Immunohorizons ; 6(6): 373-383, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35738824

RESUMO

Blood-feeding arthropods secrete potent salivary molecules, which include platelet aggregation inhibitors, vasodilators, and anticoagulants. Among these molecules, Alboserpin, the major salivary anticoagulant from the mosquito vector Aedes albopictus, is a specific inhibitor of the human coagulation factor Xa (FXa). In this study, we investigated the anti-inflammatory properties of Alboserpin, in vitro and in vivo. In vitro, Alboserpin inhibited FXa-induced protease-activated receptor (PAR)-1, PAR-2, PAR-3, VCAM, ICAM, and NF-κB gene expression in primary dermal microvascular endothelial cells. Alboserpin also prevented FXa-stimulated ERK1/2 gene expression and subsequent inflammatory cytokine release (MCP-1, TNF-α, IL-6, IL-8, IL-1ß, IL-18). In vivo, Alboserpin reduced paw edema induced by FXa and subsequent release of inflammatory cytokines (CCL2, MCP-1, IL-1α, IL-6, IL-1ß). Alboserpin also reduced FXa-induced endothelial permeability in vitro and in vivo. These findings show that Alboserpin is a potent anti-inflammatory molecule, in vivo and in vitro, and may play a significant role in blood feeding.


Assuntos
Aedes , Aedes/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anticoagulantes/farmacologia , Citocinas , Células Endoteliais/metabolismo , Humanos , Interleucina-6 , Mosquitos Vetores , Receptor PAR-1/genética , Receptor PAR-1/metabolismo
4.
Ticks Tick Borne Dis ; 13(3): 101910, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35121230

RESUMO

The synganglion is the central nervous system of ticks and, as such, controls tick physiology. It does so through the production and release of signaling molecules, many of which are neuropeptides. These peptides can function as neurotransmitters, neuromodulators and/or neurohormones, although in most cases their functions remain to be established. We identified and performed in silico characterization of neuropeptides present in different life stages and organs of Rhipicephalus microplus, generating transcriptomes from ovary, salivary glands, fat body, midgut and embryo. Annotation of synganglion transcripts led to the identification of 32 functional categories of proteins, of which the most abundant were: secreted, energetic metabolism and oxidant metabolism/detoxification. Neuropeptide precursors are among the sequences over-represented in R. microplus synganglion, with at least 5-fold higher transcription compared with other stages/organs. A total of 52 neuropeptide precursors were identified: ACP, achatin, allatostatins A, CC and CCC, allatotropin, bursicon A/B, calcitonin A and B, CCAP, CCHamide, CCRFamide, CCH/ITP, corazonin, DH31, DH44, eclosion hormone, EFLamide, EFLGGPamide, elevenin, ETH, FMRFamide myosuppressin-like, glycoprotein A2/B5, gonadulin, IGF, inotocin, insulin-like peptides, iPTH, leucokinin, myoinhibitory peptide, NPF 1 and 2, orcokinin, proctolin, pyrokinin/periviscerokinin, relaxin, RYamide, SIFamide, sNPF, sulfakinin, tachykinin and trissin. Several of these neuropeptides have not been previously reported in ticks, as the presence of ETH that was first clearly identified in Parasitiformes, which include ticks and mites. Prediction of the mature neuropeptides from precursor sequences was performed using available information about these peptides from other species, conserved domains and motifs. Almost all neuropeptides identified are also present in other tick species. Characterizing the role of neuropeptides and their respective receptors in tick physiology can aid the evaluation of their potential as drug targets.


Assuntos
Ixodidae , Neuropeptídeos , Rhipicephalus , Animais , Feminino , Ixodidae/metabolismo , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Peptídeos , Rhipicephalus/genética , Rhipicephalus/metabolismo , Transcriptoma
5.
J Proteomics ; 229: 103899, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32673754

RESUMO

Tick salivary glands secrete a complex saliva into their hosts which modulates vertebrate hemostasis, immunity and tissue repair mechanisms. Transcriptomic studies revealed a large number of transcripts coding for structural and secreted protein products in a single tick species. These transcripts are organized in several large families according to their products. Not all transcripts are expressed at the same time, transcription profile switches at intervals, characterizing the phenomenon of "sialome switching". In this work, using transcriptomic and proteomic analysis we explored the sialome of Rhipicephalus sanguineus (s.l.) adult female ticks feeding on a rabbit. The correlations between transcriptional and translational results in the different groups were evaluated, confirming the "sialome switching" and validating the idea that the expression switch may serve as a mechanism of escape from the host immunity. Recombination breakpoints were identified in lipocalin and metalloprotease families, indicating this mechanism could be a possible source of diversity in the tick sialome. Another remarkable observation was the identification of host-derived proteins as a component of tick salivary gland content. These results and disclosed sequences contribute to our understanding of tick feeding biology, to the development of novel anti-tick methods, and to the discovery of novel pharmacologically active products. SIGNIFICANCE: Ticks are a burden by themselves to humans and animals, and vectors of viral, bacterial, protozoal and helminthic diseases. Their saliva has anti-clotting, anti-platelet, vasodilatory and immunomodulatory activities that allows successful feeding and pathogen transmission. Previous transcriptomic studies indicate ticks to have over one thousand transcripts coding for secreted salivary proteins. These transcripts code for proteins of diverse families, but not all are transcribed simultaneously, but rather transiently, in a succession. Here we explored the salivary transcriptome and proteome of the brown dog tick, Rhipicephalus sanguineus. A protein database of over 20 thousand sequences was "de novo" assembled from over 600 million nucleotide reads, from where over two thousand polypeptides were identified by mass spectrometry. The proteomic data was shown to vary in time with the transcription profiles, validating the idea that the expression switch may serve as a mechanism of escape from the host immunity. Analysis of the transcripts coding for lipocalin and metalloproteases indicate their genes to contain signals of breakpoint recombination suggesting a new mechanism responsible for the large diversity in tick salivary proteins. These results and the disclosed sequences contribute to our understanding of the success ticks enjoy as ectoparasites, to the development of novel anti-tick methods, and to the discovery of novel pharmacologically active products.


Assuntos
Rhipicephalus sanguineus , Animais , Cães , Feminino , Perfilação da Expressão Gênica , Proteômica , Coelhos , Rhipicephalus sanguineus/genética , Glândulas Salivares , Transcriptoma
6.
Ticks Tick Borne Dis ; 11(4): 101425, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32335011

RESUMO

Rhipicephalus microplus ticks feed on a bovine host for three weeks. At the attachment site, inflammatory and immune responses are triggered resulting in the recruitment of cells and production of a set of immunological mediators. To oppose the host's immune responses, ticks inoculate bioactive salivary molecules capable of interfering with these defense mechanisms. Serpins are among the most frequent molecules present in tick saliva and have been shown to negatively affect the host's anti-tick immunity. R. microplus has at least eighteen full-length serpins (RmS) and eleven are transcribed during blood feeding. Among them, RmS-3, RmS-6, and RmS-17 are present in the saliva of engorged females. Here, the effect of these serpins on the immune responses was evaluated in cells involved in innate/inflammatory (mast cells and macrophages) and adaptive (T cells) immunity. RmS-3 modulated mast cells due to its inhibitory activity on peritoneal rat chymase and on vascular permeability in acute inflammation. In addition, both RmS-6 and RmS-17 inhibited vascular permeability. Of the three serpins studied, neither affected activation nor inflammatory cytokine production by murine macrophages. On the other hand, RmS-3 and RmS-17 presented an inhibitory effect on the metabolic activity of lymphocytes, with the latter being the most potent, while RmS-6 had no effect on it. This activity was associated with a decrease in lymphocyte proliferation, but not with induction of cell death. The present study highlights the powerful modulatory role of tick salivary serpins in the host's immune system and inspire the discovery of targets for the treatment of inflammatory/immune disorders.


Assuntos
Imunidade Adaptativa , Proteínas de Artrópodes/imunologia , Interações Hospedeiro-Parasita/imunologia , Rhipicephalus/fisiologia , Serpinas/imunologia , Animais , Feminino , Linfócitos/imunologia , Macrófagos/imunologia , Masculino , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
7.
Exp Parasitol ; 201: 11-20, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31022392

RESUMO

The characteristics of parasitic infections are often tied to host behavior. Although most studies have investigated definitive hosts, intermediate hosts can also play a role in shaping the distribution and accumulation of parasites. This is particularly relevant in larval stages, where intermediate host's behavior could potentially interfere in the molecules secreted by the parasite into the next host during infection. To investigate this hypothesis, we used a proteomic approach to analyze excretion/secretion products (ESP) from Fasciola hepatica newly excysted juveniles (NEJ) derived from two intermediate host species, Lymnaea viatrix and Pseudosuccinea columella. The two analyzed proteomes showed differences in identity, abundance, and functional classification of the proteins. This observation could be due to differences in the biological cycle of the parasite in the host, environmental aspects, and/or host-dependent factors. Categories such as protein modification machinery, protease inhibitors, signal transduction, and cysteine-rich proteins showed different abundance between samples. More specifically, differences in abundance of individual proteins such as peptidyl-prolyl cis-trans isomerase, thioredoxin, cathepsin B, cathepsin L, and Kunitz-type inhibitors were identified. Based on the differences identified between NEJ ESP samples, we can conclude that the intermediate host is a factor influencing the proteomic profile of ESP in F. hepatica.


Assuntos
Fasciola hepatica/metabolismo , Proteínas de Helminto/metabolismo , Lymnaea/parasitologia , Proteômica , Caramujos/parasitologia , Animais , Anidrases Carbônicas/classificação , Anidrases Carbônicas/metabolismo , Proteínas de Helminto/classificação , Larva/metabolismo , Peptídeo Hidrolases/classificação , Peptídeo Hidrolases/metabolismo , Peroxirredoxinas/classificação , Peroxirredoxinas/metabolismo , Inibidores de Proteases/classificação , Inibidores de Proteases/metabolismo , Receptores de Superfície Celular/classificação , Receptores de Superfície Celular/metabolismo
8.
Exp Appl Acarol ; 63(4): 559-78, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24687173

RESUMO

Metalloproteases (MPs) have been considered essential for blood feeding and other physiological functions in several hematophagous animals, including ticks. We report the characterization of MP sequences of three important ticks from Asia, Africa and America: Ixodes persulcatus (Ip-MPs), Rhipicephalus sanguineus (Rs-MPs) and R. microplus (BrRm-MPs). Amino acid sequence identity between R. microplus and R. sanguineus MPs ranged from 76 to 100 %, and identities among I. persulcatus, I. ricinus and I. scapularis MP sequences ranged from 88 to 97 %. This high sequence identity and typical functional motifs show that all sequences are MPs. The presence of a zinc binding site, a Met-turn and cysteine rich domain at the C-terminal region indicates that these proteins belong to the reproplysin family of MPs. Differences in amino acid sequences of BrRm-MP1, BrRm-MP2, BrRm-MP4 and BrRm-MP5 (from Porto Alegre strain ticks) were 6, 2, 7 and 5 %, respectively, when compared with sequences deposited in GenBank for the same genes from other R. microplus isolates. Analyses of MPs predicted that they have various highly antigenic regions. Semi-quantitative RT-PCR analysis revealed the presence of transcripts in salivary glands of partially and fully fed female ticks. None of these transcripts were observed in males (except BrRm-MP4) and eggs. These enzymes may be functional components required during tick feeding to manipulate host defenses and support tick hematophagy.


Assuntos
Ixodidae/enzimologia , Metaloproteases/genética , Filogenia , Glândulas Salivares/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Feminino , Ixodidae/genética , Masculino , Dados de Sequência Molecular , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Alinhamento de Sequência , Análise de Sequência de DNA
9.
PLoS One ; 9(4): e94831, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24762651

RESUMO

The cattle tick Rhipicephalus (Boophilus) microplus is one of the most harmful parasites affecting bovines. Similarly to other hematophagous ectoparasites, R. microplus saliva contains a collection of bioactive compounds that inhibit host defenses against tick feeding activity. Thus, the study of tick salivary components offers opportunities for the development of immunological based tick control methods and medicinal applications. So far, only a few proteins have been identified in cattle tick saliva. The aim of this work was to identify proteins present in R. microplus female tick saliva at different feeding stages. Proteomic analysis of R. microplus saliva allowed identifying peptides corresponding to 187 and 68 tick and bovine proteins, respectively. Our data confirm that (i) R. microplus saliva is complex, and (ii) that there are remarkable differences in saliva composition between partially engorged and fully engorged female ticks. R. microplus saliva is rich mainly in (i) hemelipoproteins and other transporter proteins, (ii) secreted cross-tick species conserved proteins, (iii) lipocalins, (iv) peptidase inhibitors, (v) antimicrobial peptides, (vii) glycine-rich proteins, (viii) housekeeping proteins and (ix) host proteins. This investigation represents the first proteomic study about R. microplus saliva, and reports the most comprehensive Ixodidae tick saliva proteome published to date. Our results improve the understanding of tick salivary modulators of host defense to tick feeding, and provide novel information on the tick-host relationship.


Assuntos
Proteínas de Artrópodes/metabolismo , Proteoma/metabolismo , Rhipicephalus/metabolismo , Saliva/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bovinos , Cistatinas/metabolismo , Feminino , Genes Essenciais , Lipocalinas/metabolismo , Lipoproteínas/metabolismo , Período Pós-Prandial , Proteínas Secretadas Inibidoras de Proteinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA