Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1376545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660510

RESUMO

Background: Aging clocks tag the actual underlying age of an organism and its discrepancy with chronological age and have been reported to predict incident disease risk in the general population. However, the relationship with neurodegenerative risk and in particular with Parkinson's Disease (PD) remains unclear, with few discordant findings reporting associations with both incident and prevalent PD risk. Objective: To clarify this relationship, we computed a common aging clock based on blood markers and tested the resulting discrepancy with chronological age (ΔPhenoAge) for association with both incident and prevalent PD risk. Methods: In a large Italian population cohort - the Moli-sani study (N=23,437; age ≥ 35 years; 52% women) - we carried out both Cox Proportional Hazards regressions modelling ΔPhenoAge as exposure and incident PD as outcome, and linear models testing prevalent PD as exposure and ΔPhenoAge as outcome. All models were incrementally adjusted for age, sex, education level completed and other risk/protective factors previously associated with PD risk in the same cohort (prevalent dysthyroidism, hypertension, diabetes, use of oral contraceptives, exposure to paints, daily coffee intake and cigarette smoking). Results: No significant association between incident PD risk (209 cases, median (IQR) follow-up time 11.19 (2.03) years) and PhenoAging was observed (Hazard Ratio [95% Confidence Interval] = 0.98 [0.71; 1.37]). However, a small but significant increase of ΔPhenoAge was observed in prevalent PD cases vs healthy subjects (ß (Standard Error) = 1.39 (0.70)). An analysis of each component biomarker of PhenoAge revealed a significant positive association of prevalent PD status with red cell distribution width (RDW; ß (SE) = 0.46 (0.18)). All the remaining markers did not show any significant evidence of association. Conclusion: The reported evidence highlights systemic effects of prevalent PD status on biological aging and red cell distribution width. Further cohort and functional studies may help shedding a light on the related pathways altered at the organism level in prevalent PD, like red cells variability, inflammatory and oxidative stress mechanisms.


Assuntos
Envelhecimento , Índices de Eritrócitos , Doença de Parkinson , Humanos , Doença de Parkinson/epidemiologia , Doença de Parkinson/sangue , Feminino , Masculino , Itália/epidemiologia , Pessoa de Meia-Idade , Envelhecimento/sangue , Estudos de Coortes , Adulto , Idoso , Prevalência , Fatores de Risco , Biomarcadores/sangue , Incidência
2.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37451268

RESUMO

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Assuntos
Deficiência Intelectual , Fosfatidilinositóis , Animais , Síndrome , Actinas , Peixe-Zebra/genética , Deficiência Intelectual/genética , Monoéster Fosfórico Hidrolases/genética , Fosfatos de Fosfatidilinositol
3.
Sci Rep ; 11(1): 16821, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413389

RESUMO

Placental growth factor (PlGF) is a member of the vascular endothelial growth factor family and is involved in bone marrow-derived cell activation, endothelial stimulation and pathological angiogenesis. High levels of PlGF have been observed in several pathological conditions especially in cancer, cardiovascular, autoimmune and inflammatory diseases. Little is known about the genetics of circulating PlGF levels. Indeed, although the heritability of circulating PlGF levels is around 40%, no studies have assessed the relation between PlGF plasma levels and genetic variants at a genome-wide level. In the current study, PlGF plasma levels were measured in a population-based sample of 2085 adult individuals from three isolated populations of South Italy. A GWAS was performed in a discovery cohort (N = 1600), followed by a de novo replication (N = 468) from the same populations. The meta-analysis of the discovery and replication samples revealed one signal significantly associated with PlGF circulating levels. This signal was mapped to the PlGF co-receptor coding gene NRP1, indicating its important role in modulating the PlGF plasma levels. Two additional signals, at the PlGF receptor coding gene FLT1 and RAPGEF5 gene, were identified at a suggestive level. Pathway and TWAS analyses highlighted genes known to be involved in angiogenesis and immune response, supporting the link between these processes and PlGF regulation. Overall, these data improve our understanding of the genetic variation underlying circulating PlGF levels. This in turn could lead to new preventive and therapeutic strategies for a wide variety of PlGF-related pathologies.


Assuntos
Imunidade , Neovascularização Fisiológica , Fator de Crescimento Placentário/sangue , Adulto , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Humanos , Imunidade/genética , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Neovascularização Fisiológica/genética , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Transcrição Gênica
4.
Epigenetics ; 16(12): 1347-1360, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33393847

RESUMO

Neuromedin U (NMU) is a neuropeptide involved in gut-brain axis, energy balance and immune response. We aimed at analysing the association between NMU epigenetic variability and metabolic indices and the potential mediating role of low-grade inflammation in a general population of Italian adults.NMU Blood DNA methylation levels at two CpG islands (NMU76 and NMU32) were analysed using pyrosequencing in a randomly selected sub-cohort of 1,160 subjects from the Moli-sani study (≥35years; 49.20% men). Multivariable regressions adjusted for age, sex, smoking, alcohol and vegetable consumption were performed to estimate the associations between methylation and metabolic phenotypes (BMI, waist-to-hip ratio, blood pressure, glucose, HOMA-IR, lipids, lipoprotein(a) and apolipoproteins). Mediation analysis was performed to identify the influence of low-grade inflammation in the association using a composite index based on C reactive protein, granulocyte-to-lymphocyte ratio (GLR), platelet and white blood cell counts (INFLA-score).Using principal component analysis four methylation factors were identified: NMU76-F1, NMU76-F2, NMU32-F1 and NMU32-F2. NMU76-F1 was FDR significantly associated with total cholesterol (for 1 SD increase: ß = 4.5 ± 1.4 mg/dL of, R2 = 10.8%, p = 0.001), ApoB (0.03 ± 0.01 g/L, 12.2%, p = 0.0004), with INFLA-score (1.05 ± 0.22, p = 2.7E-6) and GLR (-0.27 ± 0.03, 30.4%, p = 1.3E-20). GLR and lymphocyte numbers mediate the association of NMU76-F1 with cholesterol (24.0% of total effect, Sobel p = 0.013) and ApoB (42.6%, p = 9E-7), respectively.These findings suggest that NMU promoter methylation patterns could mark a pathway linking lipids with haematopoiesis and systemic inflammation.


Assuntos
Metilação de DNA , Neuropeptídeos , Adulto , Eixo Encéfalo-Intestino , Ilhas de CpG , Feminino , Humanos , Masculino
5.
J Med Genet ; 54(10): 710-720, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28735299

RESUMO

BACKGROUND: The laminin alpha 5 gene (LAMA5) plays a master role in the maintenance and function of the extracellular matrix (ECM) in mammalian tissues, which is critical in developmental patterning, stem cell niches, cancer and genetic diseases. Its mutations have never been reported in human disease so far. The aim of this study was to associate the first mutation in LAMA5 gene to a novel multisystem syndrome. METHODS: A detailed characterisation of a three-generation family, including clinical, biochemical, instrumental and morphological analysis, together with genetics and expression (WES and RNAseq) studies, was performed. RESULTS: The heterozygous LAMA5 mutation c.9418G>A (p.V3140M) was associated with skin anomalies, impaired scarring, night blindness, muscle weakness, osteoarthritis, joint and internal organs ligaments laxity, malabsorption syndrome and hypothyroidism. We demonstrated that the mutation alters the amount of LAMA5 peptides likely derived from protein cleavage and perturbs the activation of the epithelial-mesenchymal signalling, producing an unbalanced expression of Sonic hedgehog and GLI1, which are upregulated in cells from affected individuals, and of ECM proteins (COL1A1, MMP1 and MMP3), which are strongly inhibited. Studies carried out using human skin biopsies showed alteration of dermal papilla with a reduction of the germinative layer and an early arrest of hair follicle downgrowth. The knock-in mouse model, generated in our laboratory, shows similar changes in the tissues studied so far. CONCLUSIONS: This is the first report of a disease phenotype associated with LAMA5 mutation in humans.


Assuntos
Doenças do Tecido Conjuntivo/genética , Matriz Extracelular/fisiologia , Laminina/genética , Mutação , Animais , Oftalmopatias/genética , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Doenças Musculares/genética , Linhagem , Fenótipo , Anormalidades da Pele/genética , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA