Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36026493

RESUMO

The alcohol dehydrogenase (ADH) family of genes encodes enzymes that catalyze the metabolism of ethanol into acetaldehyde. Nucleotide variation in ADH genes can affect the catalytic properties of these enzymes and is associated with a variety of traits, including alcoholism and cancer. Some ADH variants, including the ADH1B*48His (rs1229984) mutation in the ADH1B gene, reduce the risk of alcoholism and are under positive selection in multiple human populations. The advent of Neolithic agriculture and associated increase in fermented foods and beverages is hypothesized to have been a selective force acting on such variants. However, this hypothesis has not been tested in populations outside of Asia. Here, we use genome-wide selection scans to show that the ADH gene region is enriched for variants showing strong signals of positive selection in multiple Afroasiatic-speaking, agriculturalist populations from Ethiopia, and that this signal is unique among sub-Saharan Africans. We also observe strong selection signals at putatively functional variants in nearby lipid metabolism genes, which may influence evolutionary dynamics at the ADH region. Finally, we show that haplotypes carrying these selected variants were introduced into Northeast Africa from a West-Eurasian source within the last ∼2,000 years and experienced positive selection following admixture. These selection signals are not evident in nearby, genetically similar populations that practice hunting/gathering or pastoralist subsistence lifestyles, supporting the hypothesis that the emergence of agriculture shapes patterns of selection at ADH genes. Together, these results enhance our understanding of how adaptations to diverse environments and diets have influenced the African genomic landscape.


Assuntos
Álcool Desidrogenase , Alcoolismo , Acetaldeído , Agricultura , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Alcoolismo/genética , Etanol/metabolismo , Etiópia , Humanos , Nucleotídeos , Seleção Genética
2.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34233163

RESUMO

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Assuntos
Fator de Transcrição Associado à Microftalmia/metabolismo , NADP Trans-Hidrogenases/metabolismo , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Animais , Linhagem Celular , Estudos de Coortes , AMP Cíclico/metabolismo , Dano ao DNA , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Predisposição Genética para Doença , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanossomas/efeitos dos fármacos , Melanossomas/metabolismo , Melanossomas/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , NADP Trans-Hidrogenases/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Polimorfismo de Nucleotídeo Único/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pigmentação da Pele/efeitos dos fármacos , Pigmentação da Pele/genética , Ubiquitina/metabolismo , Peixe-Zebra
3.
Hum Mol Genet ; 29(18): 3014-3020, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32821950

RESUMO

Leukocyte telomere length (LTL) might be causal in cardiovascular disease and major cancers. To elucidate the roles of genetics and geography in LTL variability across humans, we compared LTL measured in 1295 sub-Saharan Africans (SSAs) with 559 African-Americans (AAms) and 2464 European-Americans (EAms). LTL differed significantly across SSAs (P = 0.003), with the San from Botswana (with the oldest genomic ancestry) having the longest LTL and populations from Ethiopia having the shortest LTL. SSAs had significantly longer LTL than AAms [P = 6.5(e-16)] whose LTL was significantly longer than EAms [P = 2.5(e-7)]. Genetic variation in SSAs explained 52% of LTL variance versus 27% in AAms and 34% in EAms. Adjustment for genetic variation removed the LTL differences among SSAs. LTL genetic variation among SSAs, with the longest LTL in the San, supports the hypothesis that longer LTL was ancestral in humans. Identifying factors driving LTL variation in Africa may have important ramifications for LTL-associated diseases.


Assuntos
Doenças Cardiovasculares/genética , Neoplasias/genética , Homeostase do Telômero/genética , Telômero/genética , Adulto , África Subsaariana/epidemiologia , Negro ou Afro-Americano/genética , População Negra/genética , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/epidemiologia , Feminino , Humanos , Leucócitos/patologia , Masculino , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/epidemiologia , Filogeografia , População Branca/genética
4.
PLoS Genet ; 15(3): e1008027, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30849090

RESUMO

Populations in sub-Saharan Africa have historically been exposed to intense selection from chronic infection with falciparum malaria. Interestingly, populations with the highest malaria intensity can be identified by the increased occurrence of endemic Burkitt Lymphoma (eBL), a pediatric cancer that affects populations with intense malaria exposure, in the so called "eBL belt" in sub-Saharan Africa. However, the effects of intense malaria exposure and sub-Saharan populations' genetic histories remain poorly explored. To determine if historical migrations and intense malaria exposure have shaped the genetic composition of the eBL belt populations, we genotyped ~4.3 million SNPs in 1,708 individuals from Ghana and Northern Uganda, located on opposite sides of eBL belt and with ≥ 7 months/year of intense malaria exposure and published evidence of high incidence of BL. Among 35 Ghanaian tribes, we showed a predominantly West-Central African ancestry and genomic footprints of gene flow from Gambian and East African populations. In Uganda, the North West population showed a predominantly Nilotic ancestry, and the North Central population was a mixture of Nilotic and Southern Bantu ancestry, while the Southwest Ugandan population showed a predominant Southern Bantu ancestry. Our results support the hypothesis of diverse ancestral origins of the Ugandan, Kenyan and Tanzanian Great Lakes African populations, reflecting a confluence of Nilotic, Cushitic and Bantu migrations in the last 3000 years. Natural selection analyses suggest, for the first time, a strong positive selection signal in the ATP2B4 gene (rs10900588) in Northern Ugandan populations. These findings provide important baseline genomic data to facilitate disease association studies, including of eBL, in eBL belt populations.


Assuntos
Linfoma de Burkitt/genética , Fluxo Gênico , Malária Falciparum/genética , Seleção Genética , Adolescente , África Subsaariana , Idoso , Linfoma de Burkitt/epidemiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Doenças Endêmicas , Feminino , Genética Populacional , Estudo de Associação Genômica Ampla , Gana/epidemiologia , Migração Humana , Humanos , Incidência , Lactente , Recém-Nascido , Malária Falciparum/epidemiologia , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Polimorfismo de Nucleotídeo Único , Uganda/epidemiologia
5.
Cancer Res ; 78(9): 2432-2443, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438991

RESUMO

Prostate cancer incidence and mortality rates in African and African American men are greatly elevated compared with other ethnicities. This disparity is likely explained by a combination of social, environmental, and genetic factors. A large number of susceptibility loci have been reported by genome-wide association studies (GWAS), but the contribution of these loci to prostate cancer disparities is unclear. Here, we investigated the population structure of 68 previously reported GWAS loci and calculated genetic disparity contribution statistics to identify SNPs that contribute the most to differences in prostate cancer risk across populations. By integrating GWAS results with allele frequency data, we generated genetic risk scores for 45 African and 19 non-African populations. Tests of natural selection were used to assess why some SNPs have large allele frequency differences across populations. We report that genetic predictions of prostate cancer risks are highest for West African men and lowest for East Asian men. These differences may be explained by the out-of-Africa bottleneck and natural selection. A small number of loci appear to drive elevated prostate cancer risks in men of African descent, including rs9623117, rs6983267, rs10896449, rs10993994, and rs817826. Although most prostate cancer-associated loci are evolving neutrally, there are multiple instances where alleles have hitchhiked to high frequencies with linked adaptive alleles. For example, a protective allele at 2q37 appears to have risen to high frequency in Europe due to selection acting on pigmentation. Our results suggest that evolutionary history contributes to the high rates of prostate cancer in African and African American men.Significance: A small number of genetic variants cause an elevated risk of prostate cancer in men of West African descent. Cancer Res; 78(9); 2432-43. ©2018 AACR.


Assuntos
Negro ou Afro-Americano/genética , Predisposição Genética para Doença , Variação Genética , Neoplasias da Próstata/genética , Algoritmos , Alelos , Frequência do Gene , Genética Populacional , Estudo de Associação Genômica Ampla , Humanos , Masculino , Modelos Biológicos , Razão de Chances , Polimorfismo de Nucleotídeo Único , Medição de Risco , Seleção Genética
6.
Nature ; 538(7624): 238-242, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27654910

RESUMO

High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.


Assuntos
Genoma Humano/genética , Genômica , Migração Humana/história , Grupos Raciais/genética , África/etnologia , Animais , Ásia , Conjuntos de Dados como Assunto , Estônia , Europa (Continente) , Fósseis , Fluxo Gênico , Genética Populacional , Heterozigoto , História Antiga , Humanos , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Homem de Neandertal/genética , Nova Guiné , Dinâmica Populacional
7.
PLoS Genet ; 12(7): e1006144, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27386863

RESUMO

Modern humans, the longest-living terrestrial mammals, display short telomeres and repressed telomerase activity in somatic tissues compared with most short-living small mammals. The dual trait of short telomeres and repressed telomerase might render humans relatively resistant to cancer compared with short-living small mammals. However, the trade-off for cancer resistance is ostensibly increased age-related degenerative diseases, principally in the form of atherosclerosis. In this communication, we discuss (a) the genetics of human telomere length, a highly heritable complex trait that is influenced by genetic ancestry, sex, and paternal age at conception, (b) how cancer might have played a role in the evolution of telomere biology across mammals, (c) evidence that in modern humans telomere length is a determinant (rather than only a biomarker) of cancer and atherosclerosis, and (d) the potential influence of relatively recent evolutionary forces in fashioning the variation in telomere length across and within populations, and their likely lasting impact on major diseases in humans. Finally, we propose venues for future research on human telomere genetics in the context of its potential role in shaping the modern human lifespan.


Assuntos
Aterosclerose/genética , Neoplasias/genética , Homeostase do Telômero/genética , Telômero/genética , Envelhecimento/genética , Aterosclerose/patologia , Humanos , Longevidade/genética , Neoplasias/patologia , Encurtamento do Telômero
8.
J Med Genet ; 52(3): 157-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25624462

RESUMO

BACKGROUND: Leucocyte telomere length (LTL), which is fashioned by multiple genes, has been linked to a host of human diseases, including sporadic melanoma. A number of genes associated with LTL have already been identified through genome-wide association studies. The main aim of this study was to establish whether DCAF4 (DDB1 and CUL4-associated factor 4) is associated with LTL. In addition, using ingenuity pathway analysis (IPA), we examined whether LTL-associated genes in the general population might partially explain the inherently longer LTL in patients with sporadic melanoma, the risk for which is increased with ultraviolet radiation (UVR). RESULTS: Genome-wide association (GWA) meta-analysis and de novo genotyping of 20 022 individuals revealed a novel association (p=6.4×10(-10)) between LTL and rs2535913, which lies within DCAF4. Notably, eQTL analysis showed that rs2535913 is associated with decline in DCAF4 expressions in both lymphoblastoid cells and sun-exposed skin (p=4.1×10(-3) and 2×10(-3), respectively). Moreover, IPA revealed that LTL-associated genes, derived from GWA meta-analysis (N=9190), are over-represented among genes engaged in melanoma pathways. Meeting increasingly stringent p value thresholds (p<0.05, <0.01, <0.005, <0.001) in the LTL-GWA meta-analysis, these genes were jointly over-represented for melanoma at p values ranging from 1.97×10(-169) to 3.42×10(-24). CONCLUSIONS: We uncovered a new locus associated with LTL in the general population. We also provided preliminary findings that suggest a link of LTL through genetic mechanisms with UVR and melanoma in the general population.


Assuntos
Proteínas de Transporte/genética , Leucócitos/citologia , Melanoma/genética , Homeostase do Telômero/genética , Alelos , Proteínas de Transporte/biossíntese , Proteínas de Transporte/sangue , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Melanoma/sangue , Melanoma/patologia , Fatores de Risco , Telômero/genética
9.
BMC Med Genomics ; 7: 53, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25169894

RESUMO

BACKGROUND: MiRNA expression profiling is being actively investigated as a clinical biomarker and diagnostic tool to detect multiple cancer types and stages as well as other complex diseases. Initial investigations, however, have not comprehensively taken into account genetic variability affecting miRNA expression and/or function in populations of different ethnic backgrounds. Therefore, more complete surveys of miRNA genetic variability are needed to assess global patterns of miRNA variation within and between diverse human populations and their effect on clinically relevant miRNA genes. METHODS: Genetic variation in 1524 miRNA genes was examined using whole genome sequencing (60x coverage) in a panel of 69 unrelated individuals from 14 global populations, including European, Asian and African populations. RESULTS: We identified 33 previously undescribed miRNA variants, and 31 miRNA containing variants that are globally population-differentiated in frequency between African and non-African populations (PD-miRNA). The top 1% of PD-miRNA were significantly enriched for regulation of genes involved in glucose/insulin metabolism and cell division (p < 10(-7)), most significantly the mitosis pathway, which is strongly linked to cancer onset. Overall, we identify 7 PD-miRNAs that are currently implicated as cancer biomarkers or diagnostics: hsa-mir-202, hsa-mir-423, hsa-mir-196a-2, hsa-mir-520h, hsa-mir-647, hsa-mir-943, and hsa-mir-1908. Notably, hsa-mir-202, a potential breast cancer biomarker, was found to show significantly high allele frequency differentiation at SNP rs12355840, which is known to affect miRNA expression levels in vivo and subsequently breast cancer mortality. CONCLUSION: MiRNA expression profiles represent a promising new category of disease biomarkers. However, population specific genetic variation can affect the prevalence and baseline expression of these miRNAs in diverse populations. Consequently, miRNA genetic and expression level variation among ethnic groups may be contributing in part to health disparities observed in multiple forms of cancer, specifically breast cancer, and will be an essential consideration when assessing the utility of miRNA biomarkers for the clinic.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Variação Genética , Genômica , Internacionalidade , Alelos , Sequência Conservada , Humanos , Sequências Repetidas Invertidas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
10.
Genome Biol ; 13(1): R1, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22264333

RESUMO

BACKGROUND: Genomic analysis of high-altitude populations residing in the Andes and Tibet has revealed several candidate loci for involvement in high-altitude adaptation, a subset of which have also been shown to be associated with hemoglobin levels, including EPAS1, EGLN1, and PPARA, which play a role in the HIF-1 pathway. Here, we have extended this work to high- and low-altitude populations living in Ethiopia, for which we have measured hemoglobin levels. We genotyped the Illumina 1M SNP array and employed several genome-wide scans for selection and targeted association with hemoglobin levels to identify genes that play a role in adaptation to high altitude. RESULTS: We have identified a set of candidate genes for positive selection in our high-altitude population sample, demonstrated significantly different hemoglobin levels between high- and low-altitude Ethiopians and have identified a subset of candidate genes for selection, several of which also show suggestive associations with hemoglobin levels. CONCLUSIONS: We highlight several candidate genes for involvement in high-altitude adaptation in Ethiopia, including CBARA1, VAV3, ARNT2 and THRB. Although most of these genes have not been identified in previous studies of high-altitude Tibetan or Andean population samples, two of these genes (THRB and ARNT2) play a role in the HIF-1 pathway, a pathway implicated in previous work reported in Tibetan and Andean studies. These combined results suggest that adaptation to high altitude arose independently due to convergent evolution in high-altitude Amhara populations in Ethiopia.


Assuntos
Adaptação Fisiológica/genética , Altitude , Estudo de Associação Genômica Ampla/métodos , Hemoglobinas/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte de Cátions/genética , Etiópia , Feminino , Genótipo , Hemoglobinas/metabolismo , Humanos , Masculino , Proteínas de Transporte da Membrana Mitocondrial/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas c-vav/genética , Receptores beta dos Hormônios Tireóideos/genética
11.
Hum Genet ; 123(6): 557-98, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18512079

RESUMO

Africa is the ultimate source of modern humans and as such harbors more genetic variation than any other continent. For this reason, studies of the patterns of genetic variation in African populations are crucial to understanding how genes affect phenotypic variation, including disease predisposition. In addition, the patterns of extant genetic variation in Africa are important for understanding how genetic variation affects infectious diseases that are a major problem in Africa, such as malaria, tuberculosis, schistosomiasis, and HIV/AIDS. Therefore, elucidating the role that genetic susceptibility to infectious diseases plays is critical to improving the health of people in Africa. It is also of note that recent and ongoing social and cultural changes in sub-Saharan Africa have increased the prevalence of non-communicable diseases that will also require genetic analyses to improve disease prevention and treatment. In this review we give special attention to many of the past and ongoing studies, emphasizing those in Sub-Saharan Africans that address the role of genetic variation in human disease.


Assuntos
Doenças Transmissíveis/genética , Doenças Transmissíveis/terapia , Predisposição Genética para Doença , Testes Genéticos , Doenças Metabólicas/genética , Doenças Metabólicas/terapia , Neoplasias/genética , Neoplasias/terapia , África/epidemiologia , Doenças Transmissíveis/epidemiologia , Genoma Humano , Humanos , Imunoterapia Ativa , Doenças Metabólicas/epidemiologia , Polimorfismo de Nucleotídeo Único , Estudos Soroepidemiológicos
12.
Blood Cells Mol Dis ; 33(1): 25-30, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15223006

RESUMO

In the present study, we determined the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Cyprus using two different procedures in two separate adult population groups: a semiquantitative fluorescence test on blood spotted on filter paper and a quantitative spectrophotometric test on liquid blood. The frequency of G6PD deficiency among healthy adult males was found to be 5.1% using the semiquantitative procedure and 6.4% using the quantitative procedure. Neither method was able to detect all the expected female heterozygotes (5.3% and 47.1% of the expected number, respectively). A total of 21 male hemizygotes, 1 female homozygote and 9 female heterozygotes that tested positive for G6PD deficiency were studied at the molecular level. All 32 chromosomes were genotyped and five different mutations were identified. The Mediterranean mutation in exon 6 (563C-->T) (Ser188Phe) was found to be the most common variant in the Cypriot population, accounting for 52.6% of the deficient alleles. In the remaining chromosomes, four different mutations were identified: three known mutations, Kaiping 1388G-->A (Arg463His), Chatham 1003G-->A (Ala335Thr) and Acrokorinthos 463C-->G (His155Asp), and one previously undescribed mutation in exon 3, 148C-->T (Pro50Ser), which we called G6PD Kambos. We conclude that the frequency of G6PD deficiency in Cypriot males is 6.4%, and that this deficiency is the result of several different mutations. Although all the individuals carrying the Mediterranean variant can be detected using a semiquantitative screening method, a quantitative enzyme measurement is required to detect the G6PD variants with less severe enzyme deficiencies, while the most appropriate method for heterozygote detection is DNA analysis.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Técnicas de Laboratório Clínico/normas , Chipre/epidemiologia , Análise Mutacional de DNA , Feminino , Genótipo , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Masculino , Programas de Rastreamento/métodos , Epidemiologia Molecular , Mutação de Sentido Incorreto , Prevalência , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA