Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 90(7): 4823-4831, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29542319

RESUMO

Rapid and quantitative molecular diagnostics in the field, at home, and at remote clinics is essential for evidence-based disease management, control, and prevention. Conventional molecular diagnostics requires extensive sample preparation, relatively sophisticated instruments, and trained personnel, restricting its use to centralized laboratories. To overcome these limitations, we designed a simple, inexpensive, hand-held, smartphone-based mobile detection platform, dubbed "smart-connected cup" (SCC), for rapid, connected, and quantitative molecular diagnostics. Our platform combines bioluminescent assay in real-time and loop-mediated isothermal amplification (BART-LAMP) technology with smartphone-based detection, eliminating the need for an excitation source and optical filters that are essential in fluorescent-based detection. The incubation heating for the isothermal amplification is provided, electricity-free, with an exothermic chemical reaction, and incubation temperature is regulated with a phase change material. A custom Android App was developed for bioluminescent signal monitoring and analysis, target quantification, data sharing, and spatiotemporal mapping of disease. SCC's utility is demonstrated by quantitative detection of Zika virus (ZIKV) in urine and saliva and HIV in blood within 45 min. We demonstrate SCC's connectivity for disease spatiotemporal mapping with a custom-designed website. Such a smart- and connected-diagnostic system does not require any lab facilities and is suitable for use at home, in the field, in the clinic, and particularly in resource-limited settings in the context of Internet of Medical Things (IoMT).


Assuntos
HIV/isolamento & purificação , Imagem Óptica , Patologia Molecular , Smartphone , Zika virus/isolamento & purificação , HIV/genética , Humanos , Internet , Medições Luminescentes , Técnicas de Amplificação de Ácido Nucleico , Zika virus/genética
2.
PLoS One ; 5(11): e14155, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21152399

RESUMO

BACKGROUND: The real-time monitoring of polynucleotide amplification is at the core of most molecular assays. This conventionally relies on fluorescent detection of the amplicon produced, requiring complex and costly hardware, often restricting it to specialised laboratories. PRINCIPAL FINDINGS: Here we report the first real-time, closed-tube luminescent reporter system for nucleic acid amplification technologies (NAATs) enabling the progress of amplification to be continuously monitored using simple light measuring equipment. The Bioluminescent Assay in Real-Time (BART) continuously reports through bioluminescent output the exponential increase of inorganic pyrophosphate (PPi) produced during the isothermal amplification of a specific nucleic acid target. BART relies on the coupled conversion of inorganic pyrophosphate (PPi) produced stoichiometrically during nucleic acid synthesis to ATP by the enzyme ATP sulfurylase, and can therefore be coupled to a wide range of isothermal NAATs. During nucleic acid amplification, enzymatic conversion of PPi released during DNA synthesis into ATP is continuously monitored through the bioluminescence generated by thermostable firefly luciferase. The assay shows a unique kinetic signature for nucleic acid amplifications with a readily identifiable light output peak, whose timing is proportional to the concentration of original target nucleic acid. This allows qualitative and quantitative analysis of specific targets, and readily differentiates between negative and positive samples. Since quantitation in BART is based on determination of time-to-peak rather than absolute intensity of light emission, complex or highly sensitive light detectors are not required. CONCLUSIONS: The combined chemistries of the BART reporter and amplification require only a constant temperature maintained by a heating block and are shown to be robust in the analysis of clinical samples. Since monitoring the BART reaction requires only a simple light detector, the iNAAT-BART combination is ideal for molecular diagnostic assays in both laboratory and low resource settings.


Assuntos
Luminescência , Medições Luminescentes/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Polinucleotídeos/genética , Trifosfato de Adenosina/metabolismo , Vírus da Febre Suína Clássica/genética , DNA/genética , DNA/metabolismo , Difosfatos/metabolismo , Cinética , Polinucleotídeos/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sulfato Adenililtransferase/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA