Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(5): 2355-2371, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38180815

RESUMO

The yeast Rif2 protein is known to inhibit Mre11 nuclease and the activation of Tel1 kinase through a short motif termed MIN, which binds the Rad50 subunit and simulates its ATPase activity in vitro. The mechanism by which Rif2 restrains Tel1 activation and the consequences of this inhibition at DNA double-strand breaks (DSBs) are poorly understood. In this study, we employed AlphaFold-Multimer modelling to pinpoint and validate the interaction surface between Rif2 MIN and Rad50. We also engineered the rif2-S6E mutation that enhances the inhibitory effect of Rif2 by increasing Rif2-Rad50 interaction. Unlike rif2Δ, the rif2-S6E mutation impairs hairpin cleavage. Furthermore, it diminishes Tel1 activation by inhibiting Tel1 binding to DSBs while leaving MRX association unchanged, indicating that Rif2 can directly inhibit Tel1 recruitment to DSBs. Additionally, Rif2S6E reduces Tel1-MRX interaction and increases stimulation of ATPase by Rad50, indicating that Rif2 binding to Rad50 induces an ADP-bound MRX conformation that is not suitable for Tel1 binding. The decreased Tel1 recruitment to DSBs in rif2-S6E cells impairs DSB end-tethering and this bridging defect is suppressed by expressing a Tel1 mutant variant that increases Tel1 persistence at DSBs, suggesting a direct role for Tel1 in the bridging of DSB ends.


Assuntos
Proteínas de Ligação a DNA , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Proteínas de Ligação a Telômeros , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , DNA/genética , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
2.
Hum Mol Genet ; 32(19): 2901-2912, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37440454

RESUMO

Telomere biology disorders (TBDs) are characterized by short telomeres, premature aging, bone marrow failure and cancer predisposition. Germline mutations in NHP2, encoding for one component of the telomerase cofactor H/ACA RNA binding complex together with Dyskerin, NOP10 and GAR1, have been previously reported in rare cases of TBDs. Here, we report two novel NHP2 variants (NHP2-A39T and NHP2-T44M) identified in a compound heterozygous patient affected by premature aging, bone marrow failure/myelodysplastic syndrome and gastric cancer. Although still able to support cell viability, both variants reduce the levels of hTR, the telomerase RNA component, and telomerase activity, expanding the panel of NHP2 pathological variants. Furthermore, both variants fail to be incorporated in the H/ACA RNA binding complex when in competition with wild-type endogenous NHP2, and the lack of incorporation causes their drastic proteasomal degradation. By RoseTTAFold prediction followed by molecular dynamics simulations, we reveal a dramatic distortion of residues 33-41, which normally position on top of the NHP2 core, as the main defect of NHP2-A39T, and high flexibility and the misplacement of the N-terminal region (residues 1-24) in NHP2-T44M and, to a lower degree, in NHP2-A39T. Because deletion of amino acids 2-24 causes a reduction in NHP2 levels only in the presence of wild-type NHP2, while deletion of amino acids 2-38 completely disrupts NHP2 stability, we propose that the two variants are mis-incorporated into the H/ACA binding complex due to the altered dynamics of the first 23 amino acids and/or the distortion of the residues 25-41 loop.


Assuntos
Senilidade Prematura , Telomerase , Humanos , Telomerase/genética , Ribonucleoproteínas Nucleares Pequenas/genética , RNA/genética , RNA/metabolismo , Transtornos da Insuficiência da Medula Óssea , Estabilidade Proteica , Telômero/metabolismo , Proteínas Nucleares/genética
3.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806150

RESUMO

Cannabidiol (CBD) is a non-psychoactive phytocannabinoid that has been discussed for its safety and efficacy in cancer treatments. For this reason, we have inquired into its use on triple-negative human breast cancer. Analyzing the biological effects of CBD on MDA-MB-231, we have demonstrated that both CBD dosage and serum concentrations in the culture medium influence its outcomes; furthermore, light scattering studies demonstrated that serum impacts the CBD aggregation state by acting as a surfactant agent. Pharmacological studies on CBD in combination with chemotherapeutic agents reveal that CBD possesses a protective action against the cytotoxic effect exerted by cisplatin on MDA-MB-231 grown in standard conditions. Furthermore, in a low serum condition (0.5%), starting from a threshold concentration (5 µM), CBD forms aggregates, exerts cytostatic antiproliferative outcomes, and promotes cell cycle arrest activating autophagy. At doses above the threshold, CBD exerts a highly cytotoxic effect inducing bubbling cell death. Finally, IGF-1 and EGF antagonize the antiproliferative effect of CBD protecting cells from harmful consequences of CBD aggregates. In conclusion, CBD effect is strongly associated with the physical state and concentration that reaches the treated cells, parameters not taken into account in most of the research papers.


Assuntos
Antineoplásicos , Canabidiol , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Linhagem Celular Tumoral , Humanos , Fator de Crescimento Insulin-Like I/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
4.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628517

RESUMO

Neurofibromin, the main RasGAP in the nervous system, is a 2818 aa protein with several poorly characterized functional domains. Mutations in the NF1-encoding gene lead to an autosomal dominant syndrome, neurofibromatosis, with an incidence of 1 out of 3000 newborns. Missense mutations spread in the Sec14-PH-encoding sequences as well. Structural data could not highlight the defect in mutant Sec14-PH functionality. By performing molecular dynamics simulations at different temperatures, we found that the lid-lock is fundamental for the structural interdependence of the NF1 bipartite Sec14-PH domain. In fact, increased flexibility in the lid-lock loop, observed for the K1750Δ mutant, leads to disconnection of the two subdomains and can affect the stability of the Sec14 subdomain.


Assuntos
Neurofibromatose 1 , Neurofibromina 1 , Genes da Neurofibromatose 1 , Humanos , Recém-Nascido , Simulação de Dinâmica Molecular , Neurofibromatose 1/genética , Neurofibromina 1/genética , Domínios de Homologia à Plecstrina
5.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502388

RESUMO

To achieve growth, microbial organisms must cope with stresses and adapt to the environment, exploiting the available nutrients with the highest efficiency. In Saccharomyces cerevisiae, Ras/PKA and Snf1/AMPK pathways regulate cellular metabolism according to the supply of glucose, alternatively supporting fermentation or mitochondrial respiration. Many reports have highlighted crosstalk between these two pathways, even without providing a comprehensive mechanism of regulation. Here, we show that glucose-dependent inactivation of Snf1/AMPK is independent from the Ras/PKA pathway. Decoupling glucose uptake rate from glucose concentration, we highlight a strong coordination between glycolytic metabolism and Snf1/AMPK, with an inverse correlation between Snf1/AMPK phosphorylation state and glucose uptake rate, regardless of glucose concentration in the medium. Despite fructose-1,6-bisphosphate (F1,6BP) being proposed as a glycolytic flux sensor, we demonstrate that glucose-6-phosphate (G6P), and not F1,6BP, is involved in the control of Snf1/AMPK phosphorylation state. Altogether, this study supports a model by which Snf1/AMPK senses glucose flux independently from PKA activity, and thanks to conversion of glucose into G6P.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Quinases Ativadas por AMP/fisiologia , Transporte Biológico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fermentação , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Glicólise , Mitocôndrias/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo
6.
Front Mol Biosci ; 8: 625979, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681292

RESUMO

Ras oncoproteins play a crucial role in the onset, maintenance, and progression of the most common and deadly human cancers. Despite extensive research efforts, only a few mutant-specific Ras inhibitors have been reported. We show that cmp4-previously identified as a water-soluble Ras inhibitor- targets multiple steps in the activation and downstream signaling of different Ras mutants and isoforms. Binding of this pan-Ras inhibitor to an extended Switch II pocket on HRas and KRas proteins induces a conformational change that down-regulates intrinsic and GEF-mediated nucleotide dissociation and exchange and effector binding. A mathematical model of the Ras activation cycle predicts that the inhibitor severely reduces the proliferation of different Ras-driven cancer cells, effectively cooperating with Cetuximab to reduce proliferation even of Cetuximab-resistant cancer cell lines. Experimental data confirm the model prediction, indicating that the pan-Ras inhibitor is an appropriate candidate for medicinal chemistry efforts tailored at improving its currently unsatisfactory affinity.

7.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260658

RESUMO

Palmitoylethanolamide (PEA) belongs to the class of N-acylethanolamine and is an endogenous lipid potentially useful in a wide range of therapeutic areas; products containing PEA are licensed for use in humans as a nutraceutical, a food supplement, or food for medical purposes for its analgesic and anti-inflammatory properties demonstrating efficacy and tolerability. However, the exogenously administered PEA is rapidly inactivated; in this process, fatty acid amide hydrolase (FAAH) plays a key role both in hepatic metabolism and in intracellular degradation. So, the aim of the present study was the design and synthesis of PEA analogues that are more resistant to FAAH-mediated hydrolysis. A small library of PEA analogues was designed and tested by molecular docking and density functional theory calculations to find the more stable analogue. The computational investigation identified RePEA as the best candidate in terms of both synthetic accessibility and metabolic stability to FAAH-mediated hydrolysis. The selected compound was synthesized and assayed ex vivo to monitor FAAH-mediated hydrolysis and to confirm its anti-inflammatory properties. 1H-NMR spectroscopy performed on membrane samples containing FAAH in integral membrane protein demonstrated that RePEA is not processed by FAAH, in contrast with PEA. Moreover, RePEA retains PEA's ability to inhibit LPS-induced cytokine release in both murine N9 microglial cells and human PMA-THP-1 cells.


Assuntos
Amidas/química , Amidas/metabolismo , Etanolaminas/química , Etanolaminas/metabolismo , Ácidos Graxos/química , Modelos Moleculares , Ácidos Palmíticos/química , Ácidos Palmíticos/metabolismo , Animais , Forma Celular , Sobrevivência Celular , Humanos , Hidrólise , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ligantes , Camundongos , Microglia/metabolismo , NF-kappa B/metabolismo , PPAR alfa/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Especificidade por Substrato , Células THP-1 , Termodinâmica , Fator de Necrose Tumoral alfa/metabolismo
8.
Biomolecules ; 10(11)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182807

RESUMO

RAS genes encode signaling proteins, which, in mammalian cells, act as molecular switches regulating critical cellular processes as proliferation, growth, differentiation, survival, motility, and metabolism in response to specific stimuli. Deregulation of Ras functions has a high impact on human health: gain-of-function point mutations in RAS genes are found in some developmental disorders and thirty percent of all human cancers, including the deadliest. For this reason, the pathogenic Ras variants represent important clinical targets against which to develop novel, effective, and possibly selective pharmacological inhibitors. Natural products represent a virtually unlimited resource of structurally different compounds from which one could draw on for this purpose, given the improvements in isolation and screening of active molecules from complex sources. After a summary of Ras proteins molecular and regulatory features and Ras-dependent pathways relevant for drug development, we point out the most promising inhibitory approaches, the known druggable sites of wild-type and oncogenic Ras mutants, and describe the known natural compounds capable of attenuating Ras signaling. Finally, we highlight critical issues and perspectives for the future selection of potential Ras inhibitors from natural sources.


Assuntos
Produtos Biológicos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Neoplasias/metabolismo , Proteínas ras/metabolismo , Animais , Produtos Biológicos/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética
9.
Nucleic Acids Res ; 47(7): 3550-3567, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30698745

RESUMO

Activation of the checkpoint protein Tel1 requires the Mre11-Rad50-Xrs2 (MRX) complex, which recruits Tel1 at DNA double-strand breaks (DSBs) through direct interaction between Tel1 and Xrs2. However, in vitro Tel1 activation by MRX requires ATP binding to Rad50, suggesting a role also for the MR subcomplex in Tel1 activation. Here we describe two separation-of-functions alleles, mre11-S499P and rad50-A78T, which we show to specifically affect Tel1 activation without impairing MRX functions in DSB repair. Both Mre11-S499P and Rad50-A78T reduce Tel1-MRX interaction leading to poor Tel1 association at DSBs and consequent loss of Tel1 activation. The Mre11-S499P variant reduces Mre11-Rad50 interaction, suggesting an important role for MR complex formation in Tel1 activation. Molecular dynamics simulations show that the wild type MR subcomplex bound to ATP lingers in a tightly 'closed' conformation, while ADP presence leads to the destabilization of Rad50 dimer and of Mre11-Rad50 association, both events being required for MR conformational transition to an open state. By contrast, MRA78T undertakes complex opening even if Rad50 is bound to ATP, indicating that defective Tel1 activation caused by MRA78T results from destabilization of the ATP-bound conformational state.


Assuntos
Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Ativação Transcricional/genética , Trifosfato de Adenosina/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Dano ao DNA/genética , Reparo do DNA/genética , DNA Fúngico/genética , Conformação Molecular , Complexos Multiproteicos/genética , Ligação Proteica/genética , Multimerização Proteica/genética , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética
10.
Nucleic Acids Res ; 46(6): 2990-3008, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29420790

RESUMO

Sae2 cooperates with the Mre11-Rad50-Xrs2 (MRX) complex to initiate resection of DNA double-strand breaks (DSBs) and to maintain the DSB ends in close proximity to allow their repair. How these diverse MRX-Sae2 functions contribute to DNA damage resistance is not known. Here, we describe mre11 alleles that suppress the hypersensitivity of sae2Δ cells to genotoxic agents. By assessing the impact of these mutations at the cellular and structural levels, we found that all the mre11 alleles that restore sae2Δ resistance to both camptothecin and phleomycin affect the Mre11 N-terminus and suppress the resection defect of sae2Δ cells by lowering MRX and Tel1 association to DSBs. As a consequence, the diminished Tel1 persistence potentiates Sgs1-Dna2 resection activity by decreasing Rad9 association to DSBs. By contrast, the mre11 mutations restoring sae2Δ resistance only to phleomycin are located in Mre11 C-terminus and bypass Sae2 function in end-tethering but not in DSB resection, possibly by destabilizing the Mre11-Rad50 open conformation. These findings unmask the existence of structurally distinct Mre11 domains that support resistance to genotoxic agents by mediating different processes.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Reparo do DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Antineoplásicos/farmacologia , Camptotecina/farmacologia , DNA Helicases/química , DNA Helicases/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Exodesoxirribonucleases/química , Exodesoxirribonucleases/genética , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Fleomicinas/farmacologia , Domínios Proteicos , Multimerização Proteica/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
11.
Biochim Biophys Acta Mol Cell Res ; 1865(1): 117-131, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28986220

RESUMO

The relevance of mitochondrial DNA (mtDNA) mutations in cancer process is still unknown. Since the mutagenesis of mitochondrial genome in mammals is not possible yet, we have exploited budding yeast S. cerevisiae as a model to study the effects of tumor-associated mutations in the mitochondrial MTATP6 gene, encoding subunit 6 of ATP synthase, on the energy metabolism. We previously reported that four mutations in this gene have a limited impact on the production of cellular energy. Here we show that two mutations, Atp6-P163S and Atp6-K90E (human MTATP6-P136S and MTATP6-K64E, found in prostate and thyroid cancer samples, respectively), increase sensitivity of yeast cells both to compounds inducing oxidative stress and to high concentrations of calcium ions in the medium, when Om45p, the component of porin complex in outer mitochondrial membrane (OM), was fused to GFP. In OM45-GFP background, these mutations affect the activation of yeast permeability transition pore (yPTP, also called YMUC, yeast mitochondrial unspecific channel) upon calcium induction. Moreover, we show that calcium addition to isolated mitochondria heavily induced the formation of ATP synthase dimers and oligomers, recently proposed to form the core of PTP, which was slower in the mutants. We show the genetic evidence for involvement of mitochondrial ATP synthase in calcium homeostasis and permeability transition in yeast. This paper is a first to show, although in yeast model organism, that mitochondrial ATP synthase mutations, which accumulate during carcinogenesis process, may be significant for cancer cell escape from apoptosis.


Assuntos
Cálcio/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Neoplasias/genética , Espécies Reativas de Oxigênio/metabolismo , Substituição de Aminoácidos , Apoptose/genética , Homeostase/genética , Humanos , Mutação de Sentido Incorreto , Neoplasias/metabolismo , Neoplasias/patologia , Organismos Geneticamente Modificados , Permeabilidade , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
Chem Asian J ; 12(18): 2457-2466, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28719146

RESUMO

Recent epidemiological studies have demonstrated that the consumption of healthy foods that are particularly rich in polyphenols might reduce the incidence of cancer and neurodegenerative diseases. In particular, chlorogenic acids (CGAs) occur ubiquitously in food and represent the most abundant polyphenols in the human diet. A number of beneficial biological effects of CGAs, such as anti-inflammatory activity, anti-carcinogenic activity, and protection against neurodegenerative diseases, have been reported. However, the molecular mechanisms at the base of these biological activities have not yet been investigated in depth. By combining NMR spectroscopy, molecular docking, surface plasmon resonance and ex vivo assays of the Ras-dependent breast cancer cell line MDA-MB-231, we contribute to the elucidation of the molecular basis of the activity of CGAs and natural extracts from green and roasted coffee beans as chemoprotective dietary supplements.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Café/química , Proteína Oncogênica p21(ras)/antagonistas & inibidores , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácido Clorogênico/análogos & derivados , Ácido Clorogênico/química , Ácido Clorogênico/isolamento & purificação , Ácido Clorogênico/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteína Oncogênica p21(ras)/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Polifenóis/química , Polifenóis/isolamento & purificação , Polifenóis/farmacologia , Ácido Quínico/análogos & derivados , Ácido Quínico/química , Ácido Quínico/isolamento & purificação , Ácido Quínico/farmacologia , Relação Estrutura-Atividade
13.
Methods Mol Biol ; 1120: 359-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24470037

RESUMO

For centuries yeast species have been popular hosts for classical biotechnology processes, such as baking, brewing, and wine making, and more recently for recombinant proteins production, thanks to the advantages of unicellular organisms (i.e., ease of genetic manipulation and rapid growth) together with the ability to perform eukaryotic posttranslational modifications. Moreover, yeast cells have been used for few decades as a tool for identifying the genes and pathways involved in basic cellular processes such as the cell cycle, aging, and stress response. In the budding yeast S. cerevisiae the Ras/cAMP/PKA pathway is directly involved in the regulation of metabolism, cell growth, stress resistance, and proliferation in response to the availability of nutrients and in the adaptation to glucose, controlling cytosolic cAMP levels and consequently the cAMP-dependent protein kinase (PKA) activity. Moreover, Ras signalling has been identified in several pathogenic yeasts as a key controller for virulence, due to its involvement in yeast morphogenesis. Nowadays, yeasts are still useful for Ras-like proteins investigation, both as model organisms and as a test tube to study variants of heterologous Ras-like proteins.


Assuntos
Saccharomyces cerevisiae/citologia , Transdução de Sinais , Proteínas ras/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Biochim Biophys Acta ; 1823(7): 1208-16, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22575457

RESUMO

In Saccharomyces cerevisiae, cAMP/pKA pathway plays a major role in metabolism, stress resistance and proliferation control. cAMP is produced by adenylate cyclase, which is activated both by Gpr1/Gpa2 system and Ras proteins, regulated by Cdc25/Sdc25 guanine exchange factors and Ira GTPase activator proteins. Recently, both Ras2 and Cdc25 RasGEF were reported to localize not only in plasma membrane but also in internal membranes. Here, the subcellular localization of Ras signaling complex proteins was investigated both by fluorescent tagging and by biochemical cell membrane fractionation on sucrose gradients. Although a consistent minor fraction of Ras signaling complex components was found in plasma membrane during exponential growth on glucose, Cdc25 appears to localize mainly on ER membranes, while Ira2 and Cyr1 are also significantly present on mitochondria. Moreover, PKA Tpk1 catalytic subunit overexpression induces Ira2 protein to move from mitochondria to ER membranes. These data confirm the hypothesis that different branches of Ras signaling pathways could involve different subcellular compartments, and that relocalization of Ras signaling complex components is subject to PKA control.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Domínio Catalítico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Membranas Mitocondriais/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/citologia
15.
FEBS Lett ; 585(24): 3914-20, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22036786

RESUMO

In Saccharomyces cerevisiae the Cdc25/Ras/cAMP pathway is involved in cell growth and proliferation regulation. Ras proteins are regulated by Ira1/2 GTPase activating proteins (GAPs) and Cdc25/Sdc25 guanine nucleotide exchange factors (GEFs). Most of cytosolic Cdc25 protein was found on internal membranes in exponentially growing cells, while upon incubation in a buffer with no nutrients it is re-localized to plasma membrane. The overexpression of Tpk1 PKA catalytic subunit also induces Cdc25 export from the nucleus, involving two serine residues near the Nuclear Localization Site (NLS): mutation of Ser(825) and Ser(826) to glutamate is sufficient to exclude physiologically expressed Cdc25 from the nucleus, mimicking Tpk1 overproduction effect. Mutation of these Ser residues to Ala abolishes the effect of nuclear export induced by Tpk1 overexpression on a Cdc25eGFP fusion. Moreover, mutation of these residues affects PKA-related phenotypes such as heat shock resistance, glycogen content and cell volume.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ras-GRF1/metabolismo , Transporte Ativo do Núcleo Celular , Domínio Catalítico , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Regulação Fúngica da Expressão Gênica , Fosforilação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , ras-GRF1/química , ras-GRF1/genética
16.
Curr Cancer Drug Targets ; 10(2): 192-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20088786

RESUMO

This paper reports the synthesis of a panel of small molecules with arylamides and arylsulfonamides groups and their biological activity in inhibiting nucleotide exchange on human Ras. The design of these molecules was guided by experimental and molecular modelling data previously collected on similar compounds. Aim of this work is the validation of the hypothesis that a phenyl hydroxylamine group linked to a second aromatic moiety generates a pharmacophore capable to interact with Ras and to inhibit its activation. In vitro experiments on purified human Ras clearly show that the presence of an aromatic hydroxylamine and a sulfonamide group in the same molecule is a necessary condition for Ras binding and nucleotide exchange inhibition. The inhibitor potency is lower in molecules in which either the hydroxylamine has been replaced by other functional groups or the sulfonamide has been replaced by an amide. In the case both these moieties, the hydroxylamine and sulfonamide are absent, inactive compounds are obtained.


Assuntos
Hidroxilaminas/farmacologia , Sulfonamidas/farmacologia , Proteínas ras/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Desenho de Fármacos , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Hidroxilaminas/química , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Mutação/genética , Células NIH 3T3 , Relação Estrutura-Atividade , Sulfonamidas/química , Técnicas do Sistema de Duplo-Híbrido , Proteínas ras/genética , Proteínas ras/metabolismo , ras-GRF1/metabolismo
17.
FEMS Yeast Res ; 8(4): 622-30, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18399987

RESUMO

The plasma membrane H(+)-ATPase from Saccharomyces cerevisiae is an enzyme that plays a very important role in the yeast physiology. The addition of protonophores, such as 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), also triggers a clear in vivo activation of this enzyme. Here, we demonstrate that CCCP-induced activation of the plasma membrane H(+)-ATPase shares some similarities with the sugar-induced activation of the enzyme. Phospholipase C and protein kinase C activities are essential for this activation process while Gpa2p, a G protein involved in the glucose-induced activation of the ATPase, is not required. CCCP also induces a phospholipase C-dependent increase in intracellular calcium. Moreover, we show that the availability of extracellular calcium is required for CCCP stimulation of H(+)-ATPase, suggesting a possible connection between calcium signaling and activation of ATPase.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Carbonil Cianeto m-Clorofenil Hidrazona/análogos & derivados , Membrana Celular/enzimologia , Ionóforos/farmacologia , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/metabolismo , Cálcio/análise , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Citosol/química , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteína Quinase C/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfolipases Tipo C/metabolismo
18.
Biochem Biophys Res Commun ; 343(4): 1234-43, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16581020

RESUMO

In this work, we show that glucose-induced activation of plasma membrane H(+)-ATPase from Saccharomyces cerevisiae is strongly dependent on calcium metabolism and that the glucose sensor Snf3p works in a parallel way with the G protein Gpa2p in the control of the pathway. The role of Snf3p is played by the Snf3p C-terminal tail, since in a strain with the deletion of the SNF3 gene, but also expressing a chimera protein formed by Hxt1p (a glucose transporter) and the Snf3p C-terminal tail, a normal glucose-activation process can be observed. We present evidences indicating that Snf3p would be the sensor for the internal signal (phosphorylated sugars) of this pathway that would connect calcium signaling and activation of the plasma membrane ATPase. We also show that Snf3p could be involved in the control of Pmc1p activity that would regulate the calcium availability in the cytosol.


Assuntos
Sinalização do Cálcio/fisiologia , Membrana Celular/enzimologia , ATPases Translocadoras de Prótons/fisiologia , Saccharomyces cerevisiae/fisiologia , ATPases Transportadoras de Cálcio/metabolismo , Ativação Enzimática , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Glucose/fisiologia , Proteínas Facilitadoras de Transporte de Glucose , Proteínas de Transporte de Monossacarídeos/metabolismo , Fosforilação , ATPases Transportadoras de Cálcio da Membrana Plasmática , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia
19.
Ann N Y Acad Sci ; 1030: 52-61, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15659780

RESUMO

The Ras proteins, which regulate intracellular signaling by a cyclic process involving interconversion between active GTP-bound and inactive GDP-bound states, play an essential role in controlling the activity of several crucial signaling pathways regulating normal cellular proliferation. Mutational activation of RAS genes can induce cancer in humans and other mammals. About 30% of human tumors contain an altered oncogenic Ras; therefore, inhibitors of Ras activation are potentially antineoplastic drugs. In this work we describe original molecules acting as Ras inhibitors. Recently a new class of inhibitors of the Ras nucleotide exchange process was described by Taveras et al. These molecules are able to form a noncovalent complex with Ras-GDP, inhibiting the GDP-GTP nucleotide exchange. We synthesized molecule SCH-53870 and we found that it inhibits p21-hRas nucleotide exchange in vitro, but it has very low solubility in water and undergoes rapid degradation at room temperature when dissolved in water-DMSO mixtures. This chemical instability could prejudice pharmacological activity in vivo. With the aim to improve solubility and chemical stability, we designed and synthesized other original bioactive molecules that have been characterized in vitro using purified human and yeast Ras proteins and in vivo using suitable Saccharomyces cerevisiae strains. In the long term we hope that the knowledge we derive from these compounds will help in the development of an alternative therapy targeting Ras for a specific inhibition of transformed cell proliferation.


Assuntos
Desenho de Fármacos , Proteínas ras/antagonistas & inibidores , Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo
20.
Curr Genet ; 45(2): 83-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14618376

RESUMO

The Saccharomyces cerevisiae phospholipase C Plc1 is involved in cytosolic transient glucose-induced calcium increase, which also requires the Gpr1/Gpa2 receptor/G protein complex and glucose hexokinases. Differing from mammalian cells, this increase in cytosolic calcium concentration is mainly due to an influx from the external medium. No inositol triphosphate receptor homologue has been identified in the S. cerevisiae genome; and, therefore, the transduction mechanism from Plc1 activation to calcium flux generation still has to be identified. Inositol triphosphate (IP(3)) in yeast is rapidly transformed into IP(4) and IP(5) by a dual kinase, Arg82. Then another kinase, Ipk1, phosphorylates the IP(5) into IP(6). In mutant cells that do not express either of these kinases, the glucose-induced calcium signal was not only detectable but was even wider than in the wild-type strain. IP(3) accumulation upon glucose addition was completely absent in the plc1Delta strain and was amplified both by deletion of either ARG82 or IPK1 genes and by overexpression of PLC1. These results taken together suggest that Plc1p activation by glucose, leading to cleavage of PIP(2) and generation of IP(3), seems to be sufficient for raising the calcium level in the cytosol. This is the first indication for a physiological role of IP(3) signalling in S. cerevisiae. Many aspects about the signal transduction mechanism and the final effectors require further study.


Assuntos
Sinalização do Cálcio , Inositol 1,4,5-Trifosfato/metabolismo , Saccharomyces cerevisiae/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , AMP Cíclico/metabolismo , Genes Fúngicos , Glucose/farmacologia , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sistemas do Segundo Mensageiro , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA