Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 31(10): R586-R602, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34033792

RESUMO

Filopodia, microvilli and stereocilia represent an important group of plasma membrane protrusions. These specialized projections are supported by parallel bundles of actin filaments and have critical roles in sensing the external environment, increasing cell surface area, and acting as mechanosensors. While actin-associated proteins are essential for actin-filament elongation and bundling in these protrusions, myosin motors have a surprising role in the formation and extension of filopodia and stereocilia and in the organization of microvilli. Actin regulators and specific myosins collaborate in controlling the length of these structures. Myosins can transport cargoes along the length of these protrusions, and, in the case of stereocilia and microvilli, interactions with adaptors and cargoes can also serve to anchor adhesion receptors to the actin-rich core via functionally conserved motor-adaptor complexes. This review highlights recent progress in understanding the diverse roles myosins play in filopodia, microvilli and stereocilia.


Assuntos
Pseudópodes , Estereocílios , Actinas , Microvilosidades , Miosinas
2.
Elife ; 102021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042588

RESUMO

Filopodia are thin, actin-based structures that cells use to interact with their environments. Filopodia initiation requires a suite of conserved proteins but the mechanism remains poorly understood. The actin polymerase VASP and a MyTH-FERM (MF) myosin, DdMyo7 in amoeba, are essential for filopodia initiation. DdMyo7 is localized to dynamic regions of the actin-rich cortex. Analysis of VASP mutants and treatment of cells with anti-actin drugs shows that myosin recruitment and activation in Dictyostelium requires localized VASP-dependent actin polymerization. Targeting of DdMyo7 to the cortex alone is not sufficient for filopodia initiation; VASP activity is also required. The actin regulator locally produces a cortical actin network that activates myosin and together they shape the actin network to promote extension of parallel bundles of actin during filopodia formation. This work reveals how filopodia initiation requires close collaboration between an actin-binding protein, the state of the actin cytoskeleton and MF myosin activity.


Assuntos
Actinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Dictyostelium/enzimologia , Proteínas dos Microfilamentos/metabolismo , Miosinas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Protozoários/metabolismo , Pseudópodes/enzimologia , Actinas/genética , Moléculas de Adesão Celular/genética , Dictyostelium/genética , Proteínas dos Microfilamentos/genética , Movimento , Miosinas/genética , Fosfoproteínas/genética , Proteínas de Protozoários/genética , Pseudópodes/genética , Fatores de Tempo
3.
Cytoskeleton (Hoboken) ; 77(8): 295-302, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32734648

RESUMO

Actin waves are F-actin-rich entities traveling on the ventral plasma membrane by the treadmilling mechanism. Actin waves were first discovered and are best characterized in Dictyostelium. Class I myosins are unconventional monomeric myosins that bind lipids through their tails. Dictyostelium has seven class I myosins, six of these have tails (Myo1A-F) while one has a very short tail (Myo1K), and three of them (Myo1D, Myo1E and Myo1F) bind PIP3 with high affinity. Localization of five Dictyostelium Class I myosins synchronizes with localization and propagation of actin waves. Myo1B and Myo1C colocalize with actin in actin waves, whereas Myo1D, E and F localize to the PIP3-rich region surrounded by actin waves. Here, we studied the effect of overexpression of the three PIP3 specific Class I myosins on actin waves. We found that ectopic expression of the short-tail Myo1F inhibits wave formation, short-tail Myo1E has similar but weaker inhibitory effect, but long-tail Myo1D does not affect waves. A study of Myo1F mutants shows that its membrane-binding site is absolutely required for wave inhibition, but the head portion is not. The results suggest that PIP3 specificity and the presence of two membrane-binding sites are required for inhibition of actin waves, and that inhibition may be caused by crosslinking of PIP3 heads groups.


Assuntos
Citoesqueleto de Actina/metabolismo , Dictyostelium/metabolismo , Miosinas/metabolismo
4.
J Biol Chem ; 295(12): 3757-3758, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198186

RESUMO

Insulin-stimulated trafficking of GLUT4 requires the myosin motor Myo1C and signaling adaptor 14-3-3ß. Originally, it was thought that 14-3-3ß promotes GLUT4 transport by binding the Myo1C lever arm and activating the Myo1C motor. New work by Ji and Ostap using in vitro assays reveals that 14-3-3ß binding actually inhibits Myo1C motility, prompting reconsideration of the functional relationship between 14-3-3ß and Myo1C and the regulatory potential of atypical light chains.


Assuntos
Miosina Tipo I , Miosinas , Insulina , Miosina Tipo I/metabolismo , Miosinas/genética , Miosinas/metabolismo , Fosforilação , Transporte Proteico
5.
Mol Biol Cell ; 31(2): 101-117, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31774725

RESUMO

Myosin 1s have critical roles in linking membranes to the actin cytoskeleton via direct binding to acidic lipids. Lipid binding may occur through PIP3/PIP2-specific PH domains or nonspecific ionic interactions involving basic-hydrophobic (BH) sites but the mechanism of myosin 1s distinctive lipid targeting is poorly understood.  Now we show that PH domains occur in all Dictyostelium myosin 1s and that the BH sites of Myo1A, B, C, D, and F are in conserved positions near the ß3/ß4 loops of their PH domains. In spite of these shared lipid-binding sites, we observe significant differences in myosin 1s highly dynamic localizations. All myosin 1s except Myo1A are present in macropinocytic structures but only Myo1B and Myo1C are enriched at the edges of macropinocytic cups and associate with the actin in actin waves.  In contrast, Myo1D, E, and F are enclosed by the actin wave.  Mutations of BH sites affect localization of all Dictyostelium myosin 1s. Notably, mutation of the BH site located within the PH domains of PIP3-specific Myo1D and Myo1F completely eradicates membrane binding. Thus, BH sites are important determinants of motor targeting and may have a similar role in the localization of other myosin 1s.


Assuntos
Dictyostelium/metabolismo , Miosina Tipo I/metabolismo , Domínios de Homologia à Plecstrina/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Miosina Tipo I/genética , Miosina Tipo I/ultraestrutura , Miosinas/metabolismo , Domínios Proteicos/fisiologia , Transporte Proteico , Proteínas de Protozoários/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(44): 22196-22204, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611382

RESUMO

Filopodia are actin-filled protrusions employed by cells to interact with their environment. Filopodia formation in Amoebozoa and Metazoa requires the phylogenetically diverse MyTH4-FERM (MF) myosins DdMyo7 and Myo10, respectively. While Myo10 is known to form antiparallel dimers, DdMyo7 lacks a coiled-coil domain in its proximal tail region, raising the question of how such divergent motors perform the same function. Here, it is shown that the DdMyo7 lever arm plays a role in both autoinhibition and function while the proximal tail region can mediate weak dimerization, and is proposed to be working in cooperation with the C-terminal MF domain to promote partner-mediated dimerization. Additionally, a forced dimer of the DdMyo7 motor is found to weakly rescue filopodia formation, further highlighting the importance of the C-terminal MF domain. Thus, weak dimerization activity of the DdMyo7 proximal tail allows for sensitive regulation of myosin activity to prevent inappropriate activation of filopodia formation. The results reveal that the principles of MF myosin-based filopodia formation are conserved via divergent mechanisms for dimerization.


Assuntos
Miosinas/metabolismo , Proteínas de Protozoários/metabolismo , Pseudópodes/metabolismo , Dictyostelium , Miosinas/química , Domínios Proteicos , Multimerização Proteica , Proteínas de Protozoários/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-29496823

RESUMO

The delivery of intracellular material within cells is crucial for maintaining normal function. Myosins transport a wide variety of cargo, ranging from vesicles to ribonuclear protein particles (RNPs), in plants, fungi, and metazoa. The properties of a given myosin transporter are adapted to move on different actin filament tracks, either on the disordered actin networks at the cell cortex or along highly organized actin bundles to distribute their cargo in a localized manner or move it across long distances in the cell. Transport is controlled by selective recruitment of the myosin to its cargo that also plays a role in activation of the motor.


Assuntos
Miosinas/metabolismo , Animais , Transporte Biológico , Corrente Citoplasmática , Humanos , Organelas/fisiologia , Plantas/metabolismo , RNA/metabolismo , Ribonucleoproteínas/metabolismo , Vesículas Secretórias/fisiologia , Vesículas Transportadoras/fisiologia
8.
Nat Commun ; 8: 15864, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28660889

RESUMO

Cadherin linkages between adjacent stereocilia and microvilli are essential for mechanotransduction and maintaining their organization. They are anchored to actin through interaction of their cytoplasmic domains with related tripartite complexes consisting of a class VII myosin and adaptor proteins: Myo7a/SANS/Harmonin in stereocilia and Myo7b/ANKS4B/Harmonin in microvilli. Here, we determine high-resolution structures of Myo7a and Myo7b C-terminal MyTH4-FERM domain (MF2) and unveil how they recognize harmonin using a novel binding mode. Systematic definition of interactions between domains of the tripartite complex elucidates how the complex assembles and prevents possible self-association of harmonin-a. Several Myo7a deafness mutants that map to the surface of MF2 disrupt harmonin binding, revealing the molecular basis for how they impact the formation of the tripartite complex and disrupt mechanotransduction. Our results also suggest how switching between different harmonin isoforms can regulate the formation of networks with Myo7a motors and coordinate force sensing in stereocilia.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Miosinas/química , Proteínas Adaptadoras de Transdução de Sinal/química , Sítios de Ligação , Caderinas/química , Caderinas/metabolismo , Proteínas de Transporte/química , Proteínas de Ciclo Celular , Cristalografia por Raios X , Proteínas do Citoesqueleto , Surdez/genética , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação , Miosina VIIa , Miosinas/genética , Miosinas/metabolismo , Domínios Proteicos , Espalhamento a Baixo Ângulo , Estereocílios/genética , Estereocílios/metabolismo , Difração de Raios X
9.
Proc Natl Acad Sci U S A ; 113(50): E8059-E8068, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911821

RESUMO

The formation of filopodia in Metazoa and Amoebozoa requires the activity of myosin 10 (Myo10) in mammalian cells and of Dictyostelium unconventional myosin 7 (DdMyo7) in the social amoeba Dictyostelium However, the exact roles of these MyTH4-FERM myosins (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in the initiation and elongation of filopodia are not well defined and may reflect conserved functions among phylogenetically diverse MF myosins. Phylogenetic analysis of MF myosin domains suggests that a single ancestral MF myosin existed with a structure similar to DdMyo7, which has two MF domains, and that subsequent duplications in the metazoan lineage produced its functional homolog Myo10. The essential functional features of the DdMyo7 myosin were identified using quantitative live-cell imaging to characterize the ability of various mutants to rescue filopod formation in myo7-null cells. The two MF domains were found to function redundantly in filopod formation with the C-terminal FERM domain regulating both the number of filopodia and their elongation velocity. DdMyo7 mutants consisting solely of the motor plus a single MyTH4 domain were found to be capable of rescuing the formation of filopodia, establishing the minimal elements necessary for the function of this myosin. Interestingly, a chimeric myosin with the Myo10 MF domain fused to the DdMyo7 motor also was capable of rescuing filopod formation in the myo7-null mutant, supporting fundamental functional conservation between these two distant myosins. Together, these findings reveal that MF myosins have an ancient and conserved role in filopod formation.


Assuntos
Dictyostelium/genética , Dictyostelium/metabolismo , Evolução Molecular , Miosinas/genética , Miosinas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Pseudópodes/genética , Pseudópodes/metabolismo , Amebozoários/genética , Amebozoários/metabolismo , Animais , Sequência Conservada , Domínios FERM/genética , Técnicas de Inativação de Genes , Genes de Protozoários , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Miosinas/química , Filogenia , Proteínas de Protozoários/química , Pseudópodes/química
10.
Proc Natl Acad Sci U S A ; 113(21): E2906-15, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27166421

RESUMO

Myosins containing MyTH4-FERM (myosin tail homology 4-band 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found in a wide range of phylogenetically divergent organisms, such as humans and the social amoeba Dictyostelium (Dd). Interestingly, evolutionarily distant MF myosins have similar roles in the extension of actin-filled membrane protrusions such as filopodia and bind to microtubules (MT), suggesting that the core functions of these MF myosins have been highly conserved over evolution. The structures of two DdMyo7 signature MF domains have been determined and comparison with mammalian MF structures reveals that characteristic features of MF domains are conserved. However, across millions of years of evolution conserved class-specific insertions are seen to alter the surfaces and the orientation of subdomains with respect to each other, likely resulting in new sites for binding partners. The MyTH4 domains of Myo10 and DdMyo7 bind to MT with micromolar affinity but, surprisingly, their MT binding sites are on opposite surfaces of the MyTH4 domain. The structural analysis in combination with comparison of diverse MF myosin sequences provides evidence that myosin tail domain features can be maintained without strict conservation of motifs. The results illustrate how tuning of existing features can give rise to new structures while preserving the general properties necessary for myosin tails. Thus, tinkering with the MF domain enables it to serve as a multifunctional platform for cooperative recruitment of various partners, allowing common properties such as autoinhibition of the motor and microtubule binding to arise through convergent evolution.


Assuntos
Dictyostelium , Evolução Molecular , Miosinas , Proteínas de Protozoários , Dictyostelium/química , Dictyostelium/genética , Dictyostelium/metabolismo , Humanos , Miosinas/química , Miosinas/genética , Miosinas/metabolismo , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
11.
J Muscle Res Cell Motil ; 33(5): 305-12, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22752265

RESUMO

Myosin's affinities for nucleotides and actin are reciprocal. Actin-binding substantially reduces the affinity of ATP for myosin, but the effect of actin on myosin's ADP affinity is quite variable among myosin isoforms, serving as the principal mechanism for tuning the actomyosin system to specific physiological purposes. To understand the structural basis of this variable relationship between actin and ADP binding, we studied several constructs of the catalytic domain of Dictyostelium myosin II, varying their length (from the N-terminal origin) and cysteine content. The constructs varied considerably in their actin-activated ATPase activity and in the effect of actin on ADP affinity. Actin had no significant effect on ADP affinity for a single-cysteine catalytic domain construct, a double-cysteine construct partially restored the actin-dependence of ADP binding, and restoration of all native Cys restored it further, but full restoration of function (similar to that of skeletal muscle myosin II) was obtained only by adding all native Cys and an artificial lever arm extension. Pyrene-actin fluorescence confirmed these effects on ADP binding to actomyosin. We conclude that myosin's Cys content and lever arm both allosterically modulate the reciprocal affinities of myosin for ADP and actin, a key determinant of the biological functions of myosin isoforms.


Assuntos
Domínio Catalítico/fisiologia , Dictyostelium/metabolismo , Miosina Tipo II/metabolismo , Actinas/química , Actinas/fisiologia , Actomiosina/química , Actomiosina/fisiologia , Difosfato de Adenosina/química , Difosfato de Adenosina/fisiologia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/fisiologia , Regulação Alostérica/fisiologia , Cisteína/química , Cisteína/fisiologia , Dictyostelium/química , Miosina Tipo II/química , Ligação Proteica/fisiologia
12.
J Biol Chem ; 287(18): 14923-36, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22367211

RESUMO

Class I myosins have a single heavy chain comprising an N-terminal motor domain with actin-activated ATPase activity and a C-terminal globular tail with a basic region that binds to acidic phospholipids. These myosins contribute to the formation of actin-rich protrusions such as pseudopodia, but regulation of the dynamic localization to these structures is not understood. Previously, we found that Acanthamoeba myosin IC binds to acidic phospholipids in vitro through a short sequence of basic and hydrophobic amino acids, BH site, based on the charge density of the phospholipids. The tail of Dictyostelium myosin IB (DMIB) also contains a BH site. We now report that the BH site is essential for DMIB binding to the plasma membrane and describe the molecular basis of the dynamic relocalization of DMIB in live cells. Endogenous DMIB is localized uniformly on the plasma membrane of resting cells, at active protrusions and cell-cell contacts of randomly moving cells, and at the front of motile polarized cells. The BH site is required for association of DMIB with the plasma membrane at all stages where it colocalizes with phosphoinositide bisphosphate/phosphoinositide trisphosphate (PIP(2)/PIP(3)). The charge-based specificity of the BH site allows for in vivo specificity of DMIB for PIP(2)/PIP(3) similar to the PH domain-based specificity of other class I myosins. However, DMIB-head is required for relocalization of DMIB to the front of migrating cells. Motor activity is not essential, but the actin binding site in the head is important. Thus, dynamic relocalization of DMIB is determined principally by the local PIP(2)/PIP(3) concentration in the plasma membrane and cytoplasmic F-actin.


Assuntos
Membrana Celular/metabolismo , Dictyostelium/metabolismo , Miosina Tipo I/metabolismo , Proteínas de Protozoários/metabolismo , Pseudópodes/metabolismo , Actinas/genética , Actinas/metabolismo , Membrana Celular/genética , Dictyostelium/citologia , Dictyostelium/genética , Miosina Tipo I/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Protozoários/genética , Pseudópodes/genética
13.
J Mol Biol ; 413(1): 17-23, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21875595

RESUMO

A group of closely related myosins is characterized by the presence of at least one MyTH/FERM (myosin tail homology; band 4.1, ezrin, radixin, moesin) domain in their C-terminal tails. This domain interacts with a variety of binding partners, and mutations in either the MyTH4 or the FERM domain of myosin VII and myosin XV result in deafness, highlighting the functional importance of each domain. The N-terminal MyTH/FERM region of Dictyostelium myosin VII (M7) has been isolated as a first step toward gaining insight into the function of this domain and its interaction with binding partners. The M7 MyTH4/FERM domain (MF1) binds to both actin and microtubules in vitro, with dissociation constants of 13.7 and 1.7 µM, respectively. Gel filtration and UV spectroscopy reveal that MF1 exists as a monomer in solution and forms a well-folded, compact conformation with a high degree of secondary structure. These results indicate that MF1 forms an integrated structural domain that serves to couple actin filaments and microtubules in specific regions of the cytoskeleton.


Assuntos
Actinas/metabolismo , Dictyostelium/metabolismo , Microtúbulos/metabolismo , Miosinas/isolamento & purificação , Miosinas/metabolismo , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Cromatografia em Gel , Dictyostelium/química , Cinética , Miosinas/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Análise Espectral
14.
EMBO Rep ; 12(3): 185-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21350504

RESUMO

The ESF-EMBO meeting, 'Emergent Properties of the Cytoskeleton: Molecules to Cells', took place in October 2010 in San Feliu dex Guíxols on the eastern coast of Spain. It brought together a diverse group of international cytoskeletal researchers who gave presentations on topics from structural biology and biophysical analyses of the cytoskeleton and its motors, to studies of the role of cytoskeletal proteins in multicellular development.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Citoesqueleto , Actinas/metabolismo , Animais , Proteínas do Citoesqueleto/química , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Dineínas/metabolismo , Mecanorreceptores , Microtúbulos/metabolismo , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Tropomiosina/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(5): 1891-6, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21245357

RESUMO

For many proteins, especially for molecular motors and other enzymes, the functional mechanisms remain unsolved due to a gap between static structural data and kinetics. We have filled this gap by detecting structure and kinetics simultaneously. This structural kinetics experiment is made possible by a new technique, (TR)(2)FRET (transient time-resolved FRET), which resolves protein structural states on the submillisecond timescale during the transient phase of a biochemical reaction. (TR)(2)FRET is accomplished with a fluorescence instrument that uses a pulsed laser and direct waveform recording to acquire an accurate subnanosecond time-resolved fluorescence decay every 0.1 ms after stopped flow. To apply this method to myosin, we labeled the force-generating region site specifically with two probes, mixed rapidly with ATP to initiate the recovery stroke, and measured the interprobe distance by (TR)(2)FRET with high resolution in both space and time. We found that the relay helix bends during the recovery stroke, most of which occurs before ATP is hydrolyzed, and two structural states (relay helix straight and bent) are resolved in each nucleotide-bound biochemical state. Thus the structural transition of the force-generating region of myosin is only loosely coupled to the ATPase reaction, with conformational selection driving the motor mechanism.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Miosinas/química , Trifosfato de Adenosina/química , Dictyostelium/química , Cinética , Conformação Proteica , Espectrometria de Fluorescência
16.
Proc Natl Acad Sci U S A ; 107(15): 6918-23, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20351273

RESUMO

MyTH/FERM (myosin tail homology 4/band 4.1, ezrin, radixin, and moesin) myosins have roles in cellular adhesion, extension of actin-filled projections such as filopodia and stereocilia, and directional migration. The amoeba Dictyostelium discoideum expresses a simple complement of MyTH/FERM myosins, a class VII (M7) myosin required for cell-substrate adhesion and a unique myosin named MyoG. Mutants lacking MyoG exhibit a wide range of normal actin-based behaviors, including chemotaxis to folic acid, but have a striking defect in polarization and chemotaxis to cAMP. Although the myoG mutants respond to cAMP stimulation by increasing persistence and weakly increasing levels of cortical F-actin, they do not polarize; instead, they maintain a round shape and move slowly and randomly when exposed to a chemotactic gradient. The mutants also fail to activate and localize PI3K to the membrane closest to the source of chemoattractant. These data reveal a role for a MyTH/FERM myosin in mediating early chemotactic signaling and suggest that MyTH/FERM proteins have conserved roles in signaling and the generation of cell polarity.


Assuntos
Dictyostelium/metabolismo , Miogenina/fisiologia , Miosinas/fisiologia , Actinas/química , Actinas/metabolismo , Animais , Movimento Celular , Quimiotaxia , Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Miogenina/genética , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais
17.
Proc Natl Acad Sci U S A ; 106(51): 21625-30, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19966224

RESUMO

We have used two complementary time-resolved spectroscopic techniques, dipolar electron-electron resonance and fluorescence resonance energy transfer to determine conformational changes in a single structural element of the myosin motor domain, the relay helix, before and after the recovery stroke. Two double-Cys mutants were labeled with optical probes or spin labels, and interprobe distances were determined. Both methods resolved two distinct structural states of myosin, corresponding to straight and bent conformations of the relay helix. The bent state was occupied only upon nucleotide addition, indicating that relay helix, like the entire myosin head, bends in the recovery stroke. However, saturation of myosin with nucleotide, producing a single biochemical state, did not produce a single structural state. Both straight and bent structural states of the relay helix were occupied when either ATP (ADP.BeF(x)) or ADP.P(i) (ADP.AlF(4)) analogs were bound at the active site. A greater population was found in the bent structural state when the posthydrolysis analog ADP.AlF(4) was bound. We conclude that the bending of the relay helix in the recovery stroke does not require ATP hydrolysis but is favored by it. A narrower interprobe distance distribution shows ordering of the relay helix, despite its bending, during the recovery stroke, providing further insight into the dynamics of this energy-transducing structural transition.


Assuntos
Miosinas/química , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Espectroscopia de Ressonância de Spin Eletrônica , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Conformação Proteica , Marcadores de Spin
18.
Curr Biol ; 19(23): R1076-8, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20064407

RESUMO

Mitochondria can move along and interact with actin, yet the identity of the protein(s) mediating the interactions in metazoans is unknown. A new study reveals that a novel unconventional myosin, Myo19, is a mitochondria-associated motor that may play a role in either the transport or tethering of this organelle.


Assuntos
Mitocôndrias/fisiologia , Proteínas Motores Moleculares/fisiologia , Actinas , Animais , Transporte Biológico , Citoplasma , Regulação da Expressão Gênica , Melanóforos/citologia , Miosinas/fisiologia , Transdução de Sinais , Xenopus
19.
Proc Natl Acad Sci U S A ; 105(36): 13397-402, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18765799

RESUMO

We have engineered a mutant of Dictyostelium discoideum (Dicty) myosin II that contains the same fast-reacting "SH1" thiol as in muscle myosin, spin-labeled it, and performed electron paramagnetic resonance (EPR) to compare the structure of the force-generating region of the two myosins. Dicty myosin serves as a model system for muscle myosin because of greater ease of mutagenesis, expression, and crystallization. The catalytic domains of these myosins have nearly identical crystal structures in the apo state, but there are significant differences in ATPase kinetics, and there are no crystal structures of skeletal muscle myosin with bound nucleotides, so another structural technique is needed. Previous EPR studies, with a spin label attached to SH1 in muscle myosin, have resolved the key structural states of this region. Therefore, we have performed identical experiments on both myosins spin-labeled at equivalent sites. Spectra were identical for the two myosins in the apo and ADP-bound states. With bound ADP and phosphate analogs, (i) both proteins exhibit two resolved structural states (prepowerstroke, postpowerstroke) in a single biochemical state (defined by the bound nucleotide), and (ii) these structural states are essentially identical in the two myosins but (iii) are occupied to different extents as a function of the biochemical state. We conclude that (i) myosin structural and biochemical states do not have a one-to-one correspondence, and (ii) Dicty myosin can serve as a good analog for structural studies of muscle myosin only if differences in the coupling between biochemical and structural states are taken into account.


Assuntos
Músculos/química , Miosinas/química , Marcadores de Spin , Adenosina Trifosfatases/metabolismo , Animais , Dictyostelium , Espectroscopia de Ressonância de Spin Eletrônica , Ativação Enzimática , Hidrólise , Espectrometria de Massas , Músculos/metabolismo , Miosinas/metabolismo , Nucleotídeos/química , Nucleotídeos/metabolismo , Coelhos , Especificidade por Substrato , Temperatura , Termodinâmica
20.
Proc Natl Acad Sci U S A ; 105(35): 12867-72, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18725645

RESUMO

We present a structurally dynamic model for nucleotide- and actin-induced closure of the actin-binding cleft of myosin, based on site-directed spin labeling and electron paramagnetic resonance (EPR) in Dictyostelium myosin II. The actin-binding cleft is a solvent-filled cavity that extends to the nucleotide-binding pocket and has been predicted to close upon strong actin binding. Single-cysteine labeling sites were engineered to probe mobility and accessibility within the cleft. Addition of ADP and vanadate, which traps the posthydrolysis biochemical state, influenced probe mobility and accessibility slightly, whereas actin binding caused more dramatic changes in accessibility, consistent with cleft closure. We engineered five pairs of cysteine labeling sites to straddle the cleft, each pair having one label on the upper 50-kDa domain and one on the lower 50-kDa domain. Distances between spin-labeled sites were determined from the resulting spin-spin interactions, as measured by continuous wave EPR for distances of 0.7-2 nm or pulsed EPR (double electron-electron resonance) for distances of 1.7-6 nm. Because of the high distance resolution of EPR, at least two distinct structural states of the cleft were resolved. Each of the biochemical states tested (prehydrolysis, posthydrolysis, and rigor), reflects a mixture of these structural states, indicating that the coupling between biochemical and structural states is not rigid. The resulting model is much more dynamic than previously envisioned, with both open and closed conformations of the cleft interconverting, even in the rigor actomyosin complex.


Assuntos
Actinas/metabolismo , Dictyostelium/metabolismo , Miosina Tipo II/metabolismo , Marcadores de Spin , Actomiosina/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Sítios de Ligação , Cisteína , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Mutantes/metabolismo , Miosina Tipo II/química , Ligação Proteica , Estrutura Secundária de Proteína , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA