Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(12): 8303-8331, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35696646

RESUMO

The perinucleolar compartment (PNC) is a dynamic subnuclear body found at the periphery of the nucleolus. The PNC is enriched with RNA transcripts and RNA-binding proteins, reflecting different states of genome organization. PNC prevalence positively correlates with cancer progression and metastatic capacity, making it a useful marker for metastatic cancer progression. A high-throughput, high-content assay was developed to identify novel small molecules that selectively reduce PNC prevalence in cancer cells. We identified and further optimized a pyrrolopyrimidine series able to reduce PNC prevalence in PC3M cancer cells at submicromolar concentrations without affecting cell viability. Structure-activity relationship exploration of the structural elements necessary for activity resulted in the discovery of several potent compounds. Analysis of in vitro drug-like properties led to the discovery of the bioavailable analogue, metarrestin, which has shown potent antimetastatic activity with improved survival in rodent models and is currently being evaluated in a first-in-human phase 1 clinical trial.


Assuntos
Núcleo Celular , Neoplasias , Biomarcadores/metabolismo , Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Núcleo Celular/metabolismo , Humanos , Neoplasias/metabolismo , Pirimidinas , Pirróis
2.
Mol Pharmacol ; 94(4): 1197-1209, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30068735

RESUMO

The D1 dopamine receptor is linked to a variety of neuropsychiatric disorders and represents an attractive drug target for the enhancement of cognition in schizophrenia, Alzheimer disease, and other disorders. Positive allosteric modulators (PAMs), with their potential for greater selectivity and larger therapeutic windows, may represent a viable drug development strategy, as orthosteric D1 receptor agonists possess known clinical liabilities. We discovered two structurally distinct D1 receptor PAMs, MLS6585 and MLS1082, via a high-throughput screen of the NIH Molecular Libraries program small-molecule library. Both compounds potentiate dopamine-stimulated G protein- and ß-arrestin-mediated signaling and increase the affinity of dopamine for the D1 receptor with low micromolar potencies. Neither compound displayed any intrinsic agonist activity. Both compounds were also found to potentiate the efficacy of partial agonists. We tested maximally effective concentrations of each PAM in combination to determine if the compounds might act at separate or similar sites. In combination, MLS1082 + MLS6585 produced an additive potentiation of dopamine potency beyond that caused by either PAM alone for both ß-arrestin recruitment and cAMP accumulation, suggesting diverse sites of action. In addition, MLS6585, but not MLS1082, had additive activity with the previously described D1 receptor PAM "Compound B," suggesting that MLS1082 and Compound B may share a common binding site. A point mutation (R130Q) in the D1 receptor was found to abrogate MLS1082 activity without affecting that of MLS6585, suggesting this residue may be involved in the binding/activity of MLS1082 but not that of MLS6585. Together, MLS1082 and MLS6585 may serve as important tool compounds for the characterization of diverse allosteric sites on the D1 receptor as well as the development of optimized lead compounds for therapeutic use.


Assuntos
Regulação Alostérica/fisiologia , Sítio Alostérico/fisiologia , Receptores Dopaminérgicos/metabolismo , Animais , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Dopamina/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Transdução de Sinais/fisiologia , beta-Arrestinas/metabolismo
3.
Sci Transl Med ; 10(441)2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769289

RESUMO

Metastasis remains a leading cause of cancer mortality due to the lack of specific inhibitors against this complex process. To identify compounds selectively targeting the metastatic state, we used the perinucleolar compartment (PNC), a complex nuclear structure associated with metastatic behaviors of cancer cells, as a phenotypic marker for a high-content screen of over 140,000 structurally diverse compounds. Metarrestin, obtained through optimization of a screening hit, disassembles PNCs in multiple cancer cell lines, inhibits invasion in vitro, suppresses metastatic development in three mouse models of human cancer, and extends survival of mice in a metastatic pancreatic cancer xenograft model with no organ toxicity or discernable adverse effects. Metarrestin disrupts the nucleolar structure and inhibits RNA polymerase (Pol) I transcription, at least in part by interacting with the translation elongation factor eEF1A2. Thus, metarrestin represents a potential therapeutic approach for the treatment of metastatic cancer.


Assuntos
Nucléolo Celular/patologia , Metástase Neoplásica/tratamento farmacológico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Animais , Linhagem Celular Tumoral , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , DNA Ribossômico/genética , Humanos , Masculino , Camundongos , Invasividade Neoplásica , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fator 1 de Elongação de Peptídeos/metabolismo , Regiões Promotoras Genéticas/genética , Pirimidinas/química , Pirimidinas/farmacologia , Pirróis/química , Pirróis/farmacologia , RNA Polimerase I/metabolismo , Precursores de RNA/biossíntese , Análise de Sobrevida , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Death Dis ; 7(12): e2492, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906188

RESUMO

The discovery of chemotherapeutic agents for the treatment of cancer commonly uses cell proliferation assays in which cells grow as two-dimensional (2D) monolayers. Compounds identified using 2D monolayer assays often fail to advance during clinical development, most likely because these assays do not reproduce the cellular complexity of tumors and their microenvironment in vivo. The use of three-dimensional (3D) cellular systems have been explored as enabling more predictive in vitro tumor models for drug discovery. To date, small-scale screens have demonstrated that pharmacological responses tend to differ between 2D and 3D cancer cell growth models. However, the limited scope of screens using 3D models has not provided a clear delineation of the cellular pathways and processes that differentially regulate cell survival and death in the different in vitro tumor models. Here we sought to further understand the differences in pharmacological responses between cancer tumor cells grown in different conditions by profiling a large collection of 1912 chemotherapeutic agents. We compared pharmacological responses obtained from cells cultured in traditional 2D monolayer conditions with those responses obtained from cells forming spheres versus cells already in 3D spheres. The target annotation of the compound library screened enabled the identification of those key cellular pathways and processes that when modulated by drugs induced cell death in all growth conditions or selectively in the different cell growth models. In addition, we also show that many of the compounds targeting these key cellular functions can be combined to produce synergistic cytotoxic effects, which in many cases differ in the magnitude of their synergism depending on the cellular model and cell type. The results from this work provide a high-throughput screening framework to profile the responses of drugs both as single agents and in pairwise combinations in 3D sphere models of cancer cells.


Assuntos
Antineoplásicos/farmacologia , Técnicas de Cultura de Células/métodos , Modelos Biológicos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Esferoides Celulares/efeitos dos fármacos
5.
Mol Pharmacol ; 86(1): 96-105, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24755247

RESUMO

A high-throughput screening campaign was conducted to interrogate a 380,000+ small-molecule library for novel D2 dopamine receptor modulators using a calcium mobilization assay. Active agonist compounds from the primary screen were examined for orthogonal D2 dopamine receptor signaling activities including cAMP modulation and ß-arrestin recruitment. Although the majority of the subsequently confirmed hits activated all signaling pathways tested, several compounds showed a diminished ability to stimulate ß-arrestin recruitment. One such compound (MLS1547; 5-chloro-7-[(4-pyridin-2-ylpiperazin-1-yl)methyl]quinolin-8-ol) is a highly efficacious agonist at D2 receptor-mediated G protein-linked signaling, but does not recruit ß-arrestin as demonstrated using two different assays. This compound does, however, antagonize dopamine-stimulated ß-arrestin recruitment to the D2 receptor. In an effort to investigate the chemical scaffold of MLS1547 further, we characterized a set of 24 analogs of MLS1547 with respect to their ability to inhibit cAMP accumulation or stimulate ß-arrestin recruitment. A number of the analogs were similar to MLS1547 in that they displayed agonist activity for inhibiting cAMP accumulation, but did not stimulate ß-arrestin recruitment (i.e., they were highly biased). In contrast, other analogs displayed various degrees of G protein signaling bias. These results provided the basis to use pharmacophore modeling and molecular docking analyses to build a preliminary structure-activity relationship of the functionally selective properties of this series of compounds. In summary, we have identified and characterized a novel G protein-biased agonist of the D2 dopamine receptor and identified structural features that may contribute to its biased signaling properties.


Assuntos
Arrestinas/antagonistas & inibidores , Proteínas de Ligação ao GTP/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Arrestinas/metabolismo , Células CHO , Linhagem Celular , Cricetulus , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , beta-Arrestinas
6.
Dev Cell ; 26(5): 511-24, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23993788

RESUMO

Phagocytosis of large extracellular particles such as apoptotic bodies requires delivery of the intracellular endosomal and lysosomal membranes to form plasmalemmal pseudopods. Here, we identified mucolipin TRP channel 1 (TRPML1) as the key lysosomal Ca2+ channel regulating focal exocytosis and phagosome biogenesis. Both particle ingestion and lysosomal exocytosis are inhibited by synthetic TRPML1 blockers and are defective in macrophages isolated from TRPML1 knockout mice. Furthermore, TRPML1 overexpression and TRPML1 agonists facilitate both lysosomal exocytosis and particle uptake. Using time-lapse confocal imaging and direct patch clamping of phagosomal membranes, we found that particle binding induces lysosomal PI(3,5)P2 elevation to trigger TRPML1-mediated lysosomal Ca2+ release specifically at the site of uptake, rapidly delivering TRPML1-resident lysosomal membranes to nascent phagosomes via lysosomal exocytosis. Thus phagocytic ingestion of large particles activates a phosphoinositide- and Ca2+-dependent exocytosis pathway to provide membranes necessary for pseudopod extension, leading to clearance of senescent and apoptotic cells in vivo.


Assuntos
Lisossomos/genética , Fagocitose/genética , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Envelhecimento/genética , Animais , Cálcio/metabolismo , Exocitose/genética , Regulação da Expressão Gênica , Camundongos , Tamanho da Partícula , Fosfatos de Fosfatidilinositol/metabolismo , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/antagonistas & inibidores
7.
Endocrinology ; 151(7): 3454-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20427476

RESUMO

Small molecule inverse agonists for the TSH receptor (TSHR) may be used as probes of the role of basal (or agonist-independent or constitutive) signaling and may have therapeutic potential as orally active drugs to inhibit basal signaling in patients with thyroid cancer and in some patients with hyperthyroidism. We describe the first small-molecule ligand [1;2-(3-((2,6-dimethylphenoxy)methyl)-4-methoxyphenyl)-3-(furan-2-ylmethyl)-2,3-dihydroquinazolin-4(1H)-one] that exhibits inverse agonist properties at TSHR. 1 inhibits basal and TSH-stimulated signaling, measured as cAMP production, by TSHRs in HEK-EM 293 cells stably expressing wild-type TSHRs; the antagonism of TSH-mediated signaling is competitive. 1 also inhibits basal signaling by wild-type TSHRs, and four constitutively active mutants of TSHR expressed transiently in HEK-EM 293 cells. 1 was active under more physiologically relevant conditions in primary cultures of human thyrocytes expressing endogenous TSHRs where it inhibited basal levels of mRNA transcripts for thyroglobulin, thyroperoxidase, sodium iodide symporter, and TSHR. These data serve as proof of principle that small, drug-like molecules can inhibit basal signaling by TSHR. We suggest that this small molecule is a lead compound for the development of higher-potency inverse agonists that can be used as probes of TSHR biology with therapeutic potential.


Assuntos
Receptores da Tireotropina/agonistas , Animais , Células CHO , Linhagem Celular , Células Cultivadas , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Mutagênese Sítio-Dirigida , Receptores da Tireotropina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Tireotropina/farmacologia
8.
Assay Drug Dev Technol ; 8(3): 367-79, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20230302

RESUMO

Activation of G(q) protein-coupled receptors can be monitored by measuring the increase in intracellular calcium with fluorescent dyes. Recent advances in fluorescent kinetic plate readers and liquid-handling technology have made it possible to follow these transient changes in intracellular calcium in a 1,536-well plate format for high-throughput screening (HTS). Here, we have applied the latest generation of fluorescence kinetic plate readers to multiplex the agonist and antagonist screens of a G protein-coupled receptor (GPCR). This multiplexed assay format provides an efficient and cost-effective method for HTS of G(q)-coupled GPCR targets.


Assuntos
Cálcio/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Células CHO , Cálcio/análise , Calibragem , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Corantes Fluorescentes , Indicadores e Reagentes , Cinética , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Ensaio Radioligante , Receptor Muscarínico M1/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 106(30): 12471-6, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19592511

RESUMO

Seven-transmembrane-spanning receptors (7TMRs) are prominent drug targets. However, small-molecule ligands for 7-transmembrane-spanning receptors for which the natural ligands are large, heterodimeric glycoprotein hormones, like thyroid-stimulating hormone (TSH; thyrotropin), have only recently been reported, and none are approved for human use. We have used quantitative high-throughput screening to identify a small-molecule TSH receptor (TSHR) agonist that was modified to produce a second agonist with increased potency. We show that these agonists are highly selective for human TSHR versus other glycoprotein hormone receptors and interact with the receptor's serpentine domain. A binding pocket within the transmembrane domain was defined by docking into a TSHR homology model and was supported by site-directed mutagenesis. In primary cultures of human thyrocytes, both TSH and the agonists increase mRNA levels for thyroglobulin, thyroperoxidase, sodium iodide symporter, and deiodinase type 2, and deiodinase type 2 enzyme activity. Moreover, oral administration of the agonist stimulated thyroid function in mice, resulting in increased serum thyroxine and thyroidal radioiodide uptake. Thus, we discovered a small molecule that activates human TSHR in vitro, is orally active in mice, and could be a lead for development of drugs to use in place of recombinant human TSH in patients with thyroid cancer.


Assuntos
Compostos Orgânicos/farmacologia , Receptores da Tireotropina/agonistas , Glândula Tireoide/efeitos dos fármacos , Acetamidas/síntese química , Acetamidas/química , Acetamidas/farmacologia , Animais , Sítios de Ligação , Linhagem Celular , Células Cultivadas , AMP Cíclico/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Compostos Orgânicos/síntese química , Compostos Orgânicos/química , Estrutura Terciária de Proteína , Quinazolinonas/síntese química , Quinazolinonas/química , Quinazolinonas/farmacologia , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tireoglobulina/genética , Tireoglobulina/metabolismo , Glândula Tireoide/citologia , Glândula Tireoide/fisiologia , Tireotropina/farmacologia , Transfecção
10.
J Biomol Screen ; 13(2): 120-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18216391

RESUMO

The thyroid-stimulating hormone (TSH; thyrotropin) receptor belongs to the glycoprotein hormone receptor subfamily of 7-transmembrane spanning receptors. TSH receptor (TSHR) is expressed mainly in thyroid follicular cells and is activated by TSH, which regulates the growth and function of thyroid follicular cells. Recombinant TSH is used in diagnostic screens for thyroid cancer, especially in patients after thyroid cancer surgery. Currently, no selective small-molecule agonists of the TSHR are available. To screen for novel TSHR agonists, the authors miniaturized a commercially available cell-based cyclic adenosine 3',5' monophosphate (cAMP) assay into a 1536-well plate format. This assay uses an HEK293 cell line stably transfected with the TSHR coupled to a cyclic nucleotide gated ion channel as a biosensor. From a quantitative high-throughput screen of 73,180 compounds in parallel with a parental cell line (without the TSHR), 276 primary active compounds were identified. The activities of the selected active compounds were further confirmed in an orthogonal homogeneous time-resolved fluorescence cAMP-based assay. Forty-nine compounds in several structural classes have been confirmed as the small-molecule TSHR agonists that will serve as a starting point for chemical optimization and studies of thyroid physiology in health and disease.


Assuntos
AMP Cíclico/análise , Avaliação Pré-Clínica de Medicamentos/métodos , Receptores da Tireotropina/agonistas , Bibliotecas de Moléculas Pequenas/análise , Algoritmos , Calibragem , Células Cultivadas , Reações Falso-Positivas , Humanos , Miniaturização , Modelos Biológicos , Relação Quantitativa Estrutura-Atividade , Receptores da Tireotropina/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA