Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
ALTEX ; 40(4): 649-664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37422924

RESUMO

Lung cancer is a leading cause of death worldwide, with only a fraction of patients responding to immunotherapy. The correlation between increased T-cell infiltration and positive patient outcomes has motivated the search for therapeutics promoting T-cell infiltration. While transwell and spheroid platforms have been employed, these models lack flow and endothelial barriers, and cannot faithfully model T-cell adhesion, extravasation, and migration through 3D tissue. Presented here is a 3D chemotaxis assay, in a lung tumor-on-chip model with 3D endothelium (LToC-Endo), to address this need. The described assay consists of a HUVEC-derived vascular tubule cultured under rocking flow, through which T-cells are added; a collagenous stromal barrier, through which T-cells migrate; and a chemoattractant/tumor (HCC0827 or NCI-H520) compartment. Here, activated T-cells extravasate and migrate in response to gradients of rhCXCL11 and rhCXCL12. Adopting a T-cell activation protocol with a rest period enables proliferative burst prior to introducing T-cells into chips and enhances assay sensitivity. In addition, incorporating this rest recovers endothelial activation in response to rhCXCL12. As a final control, we show that blocking ICAM-1 interferes with T-cell adhesion and chemotaxis. This microphysiological system, which mimics in vivo stromal and vascular barriers, can be used to evaluate potentiation of immune chemotaxis into tumors while probing for vascular responses to potential therapeutics. Finally, we propose translational strategies by which this assay could be linked to preclinical and clinical models to support human dose prediction, personalized medicine, and the reduction, refinement, and replacement of animal models.


Assuntos
Neoplasias Pulmonares , Sistemas Microfisiológicos , Animais , Humanos , Células Cultivadas , Endotélio Vascular , Neoplasias Pulmonares/tratamento farmacológico , Movimento Celular
2.
Assay Drug Dev Technol ; 17(3): 128-139, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30958701

RESUMO

Zika virus has recently emerged as a worldwide pathogen and public health burden due to its rapid spread and identification as a causative agent for multiple neurological defects, including congenital microcephaly. While there has been a flurry of recent research to address this emerging pathogen, there are currently no approved drug treatments for ZIKV infection. The gold standard for testing antiviral activity is to quantify infectious virion production. However, current infectious viral production assays, such as the plaque-forming or focus-forming unit assay, are tedious and labor intensive with a low-screening throughput. To facilitate drug development, we developed a Zika viral titration assay using an automated imaging system and an image analysis algorithm for viral colony quantification. This assay retained the principle of the classical virus titer assay, while improving workflow and offering higher screening throughput. In addition, this assay can be broadly adapted to quantification of other viruses.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Carga Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Algoritmos , Antivirais/química , Automação , Humanos , Testes de Sensibilidade Microbiana , Imagem Óptica , Células Tumorais Cultivadas
3.
Sci Rep ; 8(1): 11135, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042482

RESUMO

Imaging and subsequent segmentation analysis in three-dimensional (3D) culture models are complicated by the light scattering that occurs when collecting fluorescent signal through multiple cell and extracellular matrix layers. For 3D cell culture models to be usable for drug discovery, effective and efficient imaging and analysis protocols need to be developed that enable high-throughput data acquisition and quantitative analysis of fluorescent signal. Here we report the first high-throughput protocol for optical clearing of spheroids, fluorescent high-content confocal imaging, 3D nuclear segmentation, and post-segmentation analysis. We demonstrate nuclear segmentation in multiple cell types, with accurate identification of fluorescently-labeled subpopulations, and develop a metric to assess the ability of clearing to improve nuclear segmentation deep within the tissue. Ultimately this analysis pipeline allows for previously unattainable segmentation throughput of 3D culture models due to increased sample clarity and optimized batch-processing analysis.


Assuntos
Técnicas de Cultura de Células , Microscopia Confocal/métodos , Imagem Óptica/métodos , Esferoides Celulares/química , Linhagem Celular Tumoral , Difusão Dinâmica da Luz , Humanos
4.
Sci Rep ; 7(1): 17803, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259176

RESUMO

Quantitative Systems Pharmacology (QSP) is a drug discovery approach that integrates computational and experimental methods in an iterative way to gain a comprehensive, unbiased understanding of disease processes to inform effective therapeutic strategies. We report the implementation of QSP to Huntington's Disease, with the application of a chemogenomics platform to identify strategies to protect neuronal cells from mutant huntingtin induced death. Using the STHdh Q111 cell model, we investigated the protective effects of small molecule probes having diverse canonical modes-of-action to infer pathways of neuronal cell protection connected to drug mechanism. Several mechanistically diverse protective probes were identified, most of which showed less than 50% efficacy. Specific combinations of these probes were synergistic in enhancing efficacy. Computational analysis of these probes revealed a convergence of pathways indicating activation of PKA. Analysis of phospho-PKA levels showed lower cytoplasmic levels in STHdh Q111 cells compared to wild type STHdh Q7 cells, and these levels were increased by several of the protective compounds. Pharmacological inhibition of PKA activity reduced protection supporting the hypothesis that protection may be working, in part, through activation of the PKA network. The systems-level studies described here can be broadly applied to any discovery strategy involving small molecule modulation of disease phenotype.


Assuntos
Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Substâncias Protetoras/farmacologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Combinação de Medicamentos , Proteína Huntingtina/metabolismo , Camundongos , Mutação/efeitos dos fármacos , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
5.
Sci Rep ; 7(1): 12758, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986582

RESUMO

Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key metabolic enzymes that are mutated in a variety of cancers to confer a gain-of-function activity resulting in the accumulation of an oncometabolite, D-2-hydroxyglutarate (2-HG). Accumulation of 2-HG can result in epigenetic dysregulation and a block in cellular differentiation, suggesting these mutations play a role in neoplasia. Based on its potential as a cancer target, a number of small molecule inhibitors have been developed to specifically inhibit mutant forms of IDH (mIDH1 and mIDH2). We present a comprehensive suite of in vitro preclinical drug development assays that can be used as a tool-box to identify lead compounds for mIDH drug discovery programs, as well as what we believe is the most comprehensive publically available dataset on the top mIDH inhibitors. This involved biochemical, cell-based, and tier-one ADME techniques.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Mutação/genética , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Estabilidade Enzimática , Fluorescência , Glutaratos/metabolismo , Ensaios de Triagem em Larga Escala , Histonas/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Metilação , Modelos Biológicos , Monócitos/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Células THP-1
6.
SLAS Discov ; 22(5): 525-536, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28277887

RESUMO

The widespread use of two-dimensional (2D) monolayer cultures for high-throughput screening (HTS) to identify targets in drug discovery has led to attrition in the number of drug targets being validated. Solid tumors are complex, aberrantly growing microenvironments that harness structural components from stroma, nutrients fed through vasculature, and immunosuppressive factors. Increasing evidence of stromally-derived signaling broadens the complexity of our understanding of the tumor microenvironment while stressing the importance of developing better models that reflect these interactions. Three-dimensional (3D) models may be more sensitive to certain gene-silencing events than 2D models because of their components of hypoxia, nutrient gradients, and increased dependence on cell-cell interactions and therefore are more representative of in vivo interactions. Colorectal cancer (CRC) and breast cancer (BC) models composed of epithelial cells only, deemed single-cell-type tumor spheroids (SCTS) and multi-cell-type tumor spheroids (MCTS), containing fibroblasts were developed for RNAi HTS in 384-well microplates with flat-bottom wells for 2D screening and round-bottom, ultra-low-attachment wells for 3D screening. We describe the development of a high-throughput assay platform that can assess physiologically relevant phenotypic differences between screening 2D versus 3D SCTS, 3D SCTS, and MCTS in the context of different cancer subtypes. This assay platform represents a paradigm shift in how we approach drug discovery that can reduce the attrition rate of drugs that enter the clinic.


Assuntos
Técnicas de Cultura de Células/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala/métodos , Esferoides Celulares/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Descoberta de Drogas/métodos , Humanos , Interferência de RNA/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
7.
SLAS Discov ; 22(5): 537-546, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28298153

RESUMO

Two-dimensional monolayer cell proliferation assays for cancer drug discovery have made the implementation of large-scale screens feasible but only seem to reflect a simplified view that oncogenes or tumor suppressor genes are the genetic drivers of cancer cell proliferation. However, there is now increased evidence that the cellular and physiological context in which these oncogenic events occur play a key role in how they drive tumor growth in vivo and, therefore, in how tumors respond to drug treatments. In vitro 3D spheroid tumor models are being developed to better mimic the physiology of tumors in vivo, in an attempt to improve the predictability and efficiency of drug discovery for the treatment of cancer. Here we describe the establishment of a real-time 3D spheroid growth, 384-well screening assay. The cells used in this study constitutively expressed green fluorescent protein (GFP), which enabled the real-time monitoring of spheroid formation and the effect of chemotherapeutic agents on spheroid size at different time points of sphere growth and drug treatment. This real-time 3D spheroid assay platform represents a first step toward the replication in vitro of drug dosing regimens being investigated in vivo. We hope that further development of this assay platform will allow the investigation of drug dosing regimens, efficacy, and resistance before preclinical and clinical studies.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Esferoides Celulares/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Esferoides Celulares/metabolismo
8.
PLoS One ; 12(1): e0170937, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28129349

RESUMO

Aldehyde dehydrogenase enzymes (ALDHs) have a broad spectrum of biological activities through the oxidation of both endogenous and exogenous aldehydes. Increased expression of ALDH1A1 has been identified in a wide-range of human cancer stem cells and is associated with cancer relapse and poor prognosis, raising the potential of ALDH1A1 as a therapeutic target. To facilitate quantitative high-throughput screening (qHTS) campaigns for the discovery, characterization and structure-activity-relationship (SAR) studies of small molecule ALDH1A1 inhibitors with cellular activity, we show herein the miniaturization to 1536-well format and automation of a high-content cell-based ALDEFLUOR assay. We demonstrate the utility of this assay by generating dose-response curves on a comprehensive set of prior art inhibitors as well as hundreds of ALDH1A1 inhibitors synthesized in house. Finally, we established a screening paradigm using a pair of cell lines with low and high ALDH1A1 expression, respectively, to uncover novel cell-active ALDH1A1-specific inhibitors from a collection of over 1,000 small molecules.


Assuntos
Aldeído Desidrogenase/biossíntese , Inibidores Enzimáticos/química , Bibliotecas de Moléculas Pequenas/química , Aldeído Desidrogenase/antagonistas & inibidores , Família Aldeído Desidrogenase 1 , Aldeídos/metabolismo , Bioensaio , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Oxirredução , Retinal Desidrogenase , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
9.
Toxicol Appl Pharmacol ; 252(3): 250-8, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21362439

RESUMO

The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K(+)) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially leads to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC(50) potencies ranging from 0.26 to 22µM. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC(50) value of 260nM in the thallium influx assay and 80nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Compostos de Amônio Quaternário/farmacologia , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/prevenção & controle , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Concentração Inibidora 50 , Técnicas de Patch-Clamp , Compostos de Amônio Quaternário/efeitos adversos , Relação Estrutura-Atividade
10.
J Biomol Screen ; 14(9): 1045-53, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19762548

RESUMO

All solid malignancies share characteristic traits, including unlimited cellular proliferation, evasion of immune regulation, and the propensity to metastasize. The authors have previously described that a subnuclear structure, the perinucleolar compartment (PNC), is associated with the metastatic phenotype in solid tumor cancer cells. The percentage of cancer cells that contain PNCs (PNC prevalence) is indicative of the malignancy of a tumor both in vitro and in vivo, and thus PNC prevalence is a marker that reflects metastatic capability in a population of tumor cells. Although the function of the PNC remains to be determined, the PNC is highly enriched with small RNAs and RNA binding proteins. The initial chemical biology studies using a set of anticancer drugs that disassemble PNCs revealed a direct association of the structure with DNA. Therefore, PNC prevalence reduction as a phenotypic marker can be used to identify compounds that target cellular processes required for PNC maintenance and hence used to elucidate the nature of the PNC function. Here the authors report the development of an automated high-content screening assay that is capable of detecting PNC prevalence in prostate cancer cells (PC-3M) stably expressing a green fluorescent protein (GFP)-fusion protein that localizes to the PNC. The assay was optimized using known PNC-reducing drugs and non-PNC-reducing cytotoxic drugs. After optimization, the fidelity of the assay was probed with a collection of 8284 compounds and was shown to be robust and capable of detecting known and novel PNC-reducing compounds, making it the first reported high-content phenotypic screen for small changes in nuclear structure.


Assuntos
Bioensaio/métodos , Núcleo Celular/ultraestrutura , Ensaios de Triagem em Larga Escala/métodos , Neoplasias/patologia , Algoritmos , Antineoplásicos/uso terapêutico , Bioensaio/instrumentação , Biomarcadores Tumorais/metabolismo , Linhagem Celular , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Invasividade Neoplásica/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
11.
Anal Biochem ; 394(1): 30-8, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19583963

RESUMO

Long QT syndrome, either inherited or acquired from drug treatments, can result in ventricular arrhythmia (torsade de pointes) and sudden death. Human ether-a-go-go-related gene (hERG) channel inhibition by drugs is now recognized as a common reason for the acquired form of long QT syndrome. It has been reported that more than 100 known drugs inhibit the activity of the hERG channel. Since 1997, several drugs have been withdrawn from the market due to the long QT syndrome caused by hERG inhibition. Food and Drug Administration regulations now require safety data on hERG channels for investigative new drug (IND) applications. The assessment of compound activity on the hERG channel has now become an important part of the safety evaluation in the process of drug discovery. During the past decade, several in vitro assay methods have been developed and significant resources have been used to characterize hERG channel activities. However, evaluation of compound activities on hERG have not been performed for large compound collections due to technical difficulty, lack of throughput, and/or lack of biological relevance to function. Here we report a modified form of the FluxOR thallium flux assay, capable of measuring hERG activity in a homogeneous 1536-well plate format. To validate the assay, we screened a 7-point dilution series of the LOPAC 1280 library collection and reported rank order potencies of ten common hERG inhibitors. A correlation was also observed for the hERG channel activities of 10 known hERG inhibitors determined in this thallium flux assay and in the patch clamp experiment. Our findings indicate that this thallium flux assay can be used as an alternative method to profile large-volume compound libraries for compound activity on the hERG channel.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Contagem de Células , Linhagem Celular , Corantes/metabolismo , Dimetil Sulfóxido/farmacologia , Espaço Extracelular/metabolismo , Humanos , Técnicas de Patch-Clamp , Reprodutibilidade dos Testes , Tálio/metabolismo
12.
J Biomol Screen ; 13(7): 609-18, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18591513

RESUMO

The cyclic nucleotide phosphodiesterases (PDEs) are intracellular enzymes that catalyze the hydrolysis of 3,'5'-cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to their corresponding 5'nucleotide monophosphates. These enzymes play an important role in controlling cellular concentrations of cyclic nucleotides and thus regulate a variety of cellular signaling events. PDEs are emerging as drug targets for several diseases, including asthma, cardiovascular disease, attention-deficit hyperactivity disorder, Parkinson's disease, and Alzheimer's disease. Although biochemical assays with purified recombinant PDE enzymes and cAMP or cGMP substrate are commonly used for compound screening, cell-based assays would provide a better assessment of compound activity in a more physiological context. The authors report the development and validation of a new cell-based PDE4 assay using a constitutively active G-protein-coupled receptor as a driving force for cAMP production and a cyclic nucleotide-gated cation channel as a biosensor in 1536-well plates.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores da Fosfodiesterase 4 , Inibidores de Fosfodiesterase/farmacologia , Cátions , GMP Cíclico/química , Humanos , Concentração Inibidora 50 , Canais Iônicos , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/química , Transdução de Sinais , Tireotropina/metabolismo , Fatores de Tempo , Transfecção
13.
J Neurobiol ; 55(1): 73-85, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12605460

RESUMO

A very large number of evolutionarily conserved potassium channels have been identified but very little is known about their function or modulation in vivo. Metamorphosis of the tobacco hornworm, Manduca sexta, is a compelling model system for such studies because it permits analysis to be conducted at the level of identified neurons whose roles in simple behaviors and endocrine regulation are known. We present here the characterization of the first ion channel to be cloned from this animal. Partial genomic sequence for Manduca sexta ether à-go-go (Mseag) and a cDNA clone encoding the Mseag open reading frame were obtained. Genomic Southern analysis indicates that Manduca contains a single member of the eag subfamily per haploid genome. When expressed in Xenopus oocytes, MsEag channels conduct a voltage-dependent, K+ selective outward current with an inactivating component that closely resembles the Drosophila eag current. Mseag transcripts were restricted to the nervous system, adult antenna, and one set of larval skeletal muscles. Steroid hormonal regulation of Mseag expression is suggested by the temporal correlation of developmental changes in transcript expression with the changing steroid titers that promote metamorphosis. These results provide the foundation for functional and modulatory studies of the Eag family of K+ channels in Manduca, which will complement the genetic analysis in Drosophila.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/genética , Potássio/metabolismo , Sequência de Aminoácidos , Animais , Southern Blotting , Drosophila , Canal de Potássio ERG1 , Condutividade Elétrica , Eletrofisiologia , Canais de Potássio Éter-A-Go-Go , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Biblioteca Gênica , Biblioteca Genômica , Larva , Manduca , Metamorfose Biológica , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Oócitos/fisiologia , Canais de Potássio/biossíntese , Canais de Potássio/fisiologia , RNA Mensageiro/análise , Proteínas Recombinantes/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de Proteína , Especificidade da Espécie , Esteroide Hidroxilases/farmacologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA