Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R528-R551, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497126

RESUMO

In pilot work, we showed that somatic nerve transfers can restore motor function in long-term decentralized dogs. We continue to explore the effectiveness of motor reinnervation in 30 female dogs. After anesthesia, 12 underwent bilateral transection of coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. Twelve months postdecentralization, eight underwent transfer of obturator nerve branches to pelvic nerve vesical branches, and sciatic nerve branches to pudendal nerves, followed by 10 mo recovery (ObNT-ScNT Reinn). The remaining four were euthanized 18 mo postdecentralization (Decentralized). Results were compared with 18 Controls. Squat-and-void postures were tracked during awake cystometry. None showed squat-and-void postures during the decentralization phase. Seven of eight ObNT-ScNT Reinn began showing such postures by 6 mo postreinnervation; one showed a return of defecation postures. Retrograde dyes were injected into the bladder and urethra 3 wk before euthanasia, at which point, roots and transferred nerves were electrically stimulated to evaluate motor function. Upon L2-L6 root stimulation, five of eight ObNT-ScNT Reinn showed elevated detrusor pressure and four showed elevated urethral pressure, compared with L7-S3 root stimulation. After stimulation of sciatic-to-pudendal transferred nerves, three of eight ObNT-ScNT Reinn showed elevated urethral pressure; all showed elevated anal sphincter pressure. Retrogradely labeled neurons were observed in L2-L6 ventral horns (in laminae VI, VIII, and IX) of ObNT-ScNT Reinn versus Controls in which labeled neurons were observed in L7-S3 ventral horns (in lamina VII). This data supports the use of nerve transfer techniques for the restoration of bladder function.NEW & NOTEWORTHY This data supports the use of nerve transfer techniques for the restoration of bladder function.


Assuntos
Canal Anal , Neurônios Motores , Transferência de Nervo , Recuperação de Função Fisiológica , Uretra , Bexiga Urinária , Animais , Transferência de Nervo/métodos , Cães , Feminino , Bexiga Urinária/inervação , Uretra/inervação , Canal Anal/inervação , Canal Anal/cirurgia , Neurônios Motores/fisiologia , Regeneração Nervosa/fisiologia , Nervo Pudendo/cirurgia , Nervo Pudendo/fisiopatologia
2.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R885-R896, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33759578

RESUMO

This study determined the effect of pelvic organ decentralization and reinnervation 1 yr later on the contribution of muscarinic and purinergic receptors to ex vivo, nerve-evoked, bladder smooth muscle contractions. Nineteen canines underwent decentralization by bilateral transection of all coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. After exclusions, 8 were reinnervated 12 mo postdecentralization with obturator-to-pelvic and sciatic-to-pudendal nerve transfers then euthanized 8-12 mo later. Four served as long-term decentralized only animals. Controls included six sham-operated and three unoperated animals. Detrusor muscle was assessed for contractile responses to potassium chloride (KCl) and electric field stimulation (EFS) before and after purinergic receptor desensitization with α, ß-methylene adenosine triphosphate (α,ß-mATP), muscarinic receptor antagonism with atropine, or sodium channel blockade with tetrodotoxin. Atropine inhibition of EFS-induced contractions increased in decentralized and reinnervated animals compared with controls. Maximal contractile responses to α,ß-mATP did not differ between groups. In strips from decentralized and reinnervated animals, the contractile response to EFS was enhanced at lower frequencies compared with normal controls. The observation of increased blockade of nerve-evoked contractions by muscarinic antagonist with no change in responsiveness to purinergic agonist suggests either decreased ATP release or increased ecto-ATPase activity in detrusor muscle as a consequence of the long-term decentralization. The reduction in the frequency required to produce maximum contraction following decentralization may be due to enhanced nerve sensitivity to EFS or a change in the effectiveness of the neurotransmission.


Assuntos
Neurônios Motores/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Bexiga Urinária/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Atropina/farmacologia , Estimulação Elétrica/métodos , Antagonistas Muscarínicos/farmacologia , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Transferência de Nervo/métodos , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/inervação
3.
Environ Sci Pollut Res Int ; 28(31): 41760-41771, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33788088

RESUMO

Chromite ore processing residues (COPR) are real environmental threats, leading to CrO42-, i.e., Cr (VI) leaching into groundwater. It is of serious concern as Cr (VI) is proven to be carcinogenic. Here we emphasize the application of novel and eco-friendly chitin functionalized iron-enriched hydroxyapatite nanocomposite (HAP-Fe0-Ct) in the remediation of Cr (VI)-contaminated groundwater samples collected from Khan Chandpur, India, where the level of Cr (VI) is found to be 11.7 mg/L in a complex aqueous matrix having 793 mg/L of total dissolved solids. Chitin functionality in the composite has resulted in positive zeta potential at circum-neutral pH, favoring electrostatic attraction of chromate ions and resulting in its bulk surface transport. The HAP-Fe0-Ct showed faster kinetics of removal with efficiency (qm = 13.9 ± 0.46 mg/g) for Cr (VI). The composite has shown sorption equilibrium and 100% removal of Cr (VI) within 3 h of interaction time in groundwater samples. No Cr (VI) leaching in the acid wash process at pH 3.5 also suggests chromium's strong chemisorption onto nanocomposite. During the interaction in aqueous solutions, the reduced iron (Fe0) on the nanocomposite becomes oxidized, suggesting the probable simultaneous reduction of Cr (VI) and its co-precipitation. Continuous column extraction of chromate ions was also efficient in both spiked solutions (39.7 ± 0.04 mg/g) and COPR contaminated water (13.2 ± 0.09 mg/g). Reusability up to three cycles with almost complete Cr (VI) removal may be attributed to surface protonation, new binding sites generation, and electron transfer from Fe0 core through defects. The study concludes that HAP-Fe0-Ct could be utilized for continuous Cr (VI) removal from COPR contaminated complex groundwater matrices.


Assuntos
Água Subterrânea , Nanocompostos , Poluentes Químicos da Água , Quitina , Cromatos , Cromo/análise , Durapatita , Íons , Ferro , Poluentes Químicos da Água/análise
4.
Water Res ; 189: 116622, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227610

RESUMO

The ubiquitous distribution of microplastics (MPs) leads to inevitable interactions with the toxic pollutants present in the environment including metal-oxide nanoparticles. This study investigates the interaction of CeO2 nanoparticles (CeNPs) with MPs generated from a disposable plastic container. Further, rough MPs (R-MPs), generated through mechanical abrasion of MPs with sand, were used to probe the impact of roughness. To understand the sorption kinetics and underlying interaction processes, batch experiments were carried out. The results distinctly indicate that CeNPs sorption occurred on MPs surfaces and was consistent with the pseudo-second order kinetics model. For pristine MPs, the sorption capacity was as high as 12.9 mg/g while for R-MPs kinetic equilibrium was achieved faster and an enhanced sorption capacity (13.4 mg/g) was identified. A rise in sorption with an increase in salinity was noted while pH and humic acid exhibited a negative correlation. The observed interactions were attributed to the aggregation profile and surface charge of CeNPs and MPs. Surprisingly, CeNPs also got loaded onto MPs in non-agitated and undisturbed conditions. The sorption process was influenced by the type of aqueous matrix and the sorption capacity at equilibrium followed the trend: distilled water> synthetic freshwater> river water. FTIR spectra, zeta potential, SEM imaging, and elemental mapping revealed electrostatic interaction as the dominant mechanism. This work contributes towards the knowledge gap on the environmental risk of MPs.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Adsorção , Microplásticos , Óxidos , Plásticos , Poluentes Químicos da Água/análise
5.
J Neurosurg Spine ; 32(2): 258-268, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703192

RESUMO

OBJECTIVE: Previous patient surveys have shown that patients with spinal cord or cauda equina injuries prioritize recovery of bladder function. The authors sought to determine if nerve transfer after long-term decentralization restores bladder and sphincter function in canines. METHODS: Twenty-four female canines were included in this study. Transection of sacral roots and hypogastric nerves (S Dec) was performed in 6 animals, and 7 animals underwent this procedure with additional transection of the L7 dorsal roots (L7d+S Dec). Twelve months later, 3 L7d+S Dec animals underwent obturator-to-pelvic nerve and sciatic-to-pudendal nerve transfers (L7d+S Dec+Reinn). Eleven animals served as controls. Squat-and-void behaviors were tracked before and after decentralization, after reinnervation, and following awake bladder-filling procedures. Bladders were cystoscopically injected with Fluoro-Gold 3 weeks before euthanasia. Immediately before euthanasia, transferred nerves were stimulated to evaluate motor function. Dorsal root ganglia were assessed for retrogradely labeled neurons. RESULTS: Transection of only sacral roots failed to reduce squat-and-void postures; L7 dorsal root transection was necessary for significant reduction. Three L7d+S Dec animals showing loss of squat-and-void postures post-decentralization were chosen for reinnervation and recovered these postures 4-6 months after reinnervation. Each showed obturator nerve stimulation-induced bladder contractions and sciatic nerve stimulation-induced anal sphincter contractions immediately prior to euthanasia. One showed sciatic nerve stimulation-induced external urethral sphincter contractions and voluntarily voided twice following nonanesthetized bladder filling. Reinnervation was confirmed by increased labeled cells in L2 and the L4-6 dorsal root ganglia (source of obturator nerve in canines) of L7d+S Dec+Reinn animals, compared with controls. CONCLUSIONS: New neuronal pathways created by nerve transfer can restore bladder sensation and motor function in lower motor neuron-lesioned canines even 12 months after decentralization.


Assuntos
Transferência de Nervo , Raízes Nervosas Espinhais/lesões , Bexiga Urinária/inervação , Bexiga Urinária/cirurgia , Animais , Cães , Feminino , Regeneração Nervosa/fisiologia , Transferência de Nervo/métodos , Radiculopatia/fisiopatologia , Sacro/fisiopatologia , Traumatismos da Medula Espinal/cirurgia , Uretra/inervação , Uretra/fisiopatologia , Micção/fisiologia
6.
RSC Adv ; 9(20): 11160-11169, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35520243

RESUMO

A bentonite supported amorphous aluminum (B-Al) nanocomposite was synthesized by the NaBH4 reduction method in an ethanol-water interfacial solution and characterized with SEM, TEM, XRD, FT-IR and XRF. Surface morphology and line scans obtained from TEM imaging suggest the successful synthesis of the nanocomposite while XRF data shows a drastic change in Al concentration in the synthesized nanocomposite with respect to raw bentonite. This synthesized nanocomposite was further utilized for the removal of hexavalent chromium (Cr(vi)) from aqueous solutions. The very high removal efficiency of the composite for Cr(vi) (i.e. 49.5 mg g-1) was revealed by the Langmuir sorption isotherm. More than 90% removal of Cr(vi) in just 5 minutes of interaction suggests very fast removal kinetics. Inner sphere complexation and coprecipitation of Cr(vi) can be concluded as major removal mechanisms. No influence of ionic strength suggests inner sphere complexation dominated in Cr(vi) uptake. pH of the solution didn't influence the sorption much but comparatively the removal was higher under alkaline conditions (99.4%) than under acidic conditions (93.7%). The presence of humic acid and bicarbonate ions reduced the sorption significantly. The final product, Cr-Al(OH)3 results in precipitation by forming alum which indicates that clay supported amorphous aluminum nanocomposites can be considered as potential sorbents for toxic metal ions in the environment.

7.
Neurourol Urodyn ; 37(8): 2495-2501, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30024057

RESUMO

AIMS: To assess bladder smooth muscle function and innervation after long-term lower spinal root transection in canines. METHODS: Thirteen female mixed-breed hound dogs underwent bladder decentralization, which included transection of all sacral dorsal and ventral roots caudal to L7 and hypogastric nerves, bilaterally (n = 3); all sacral roots and hypogastric nerves plus transection of L7 dorsal roots, bilaterally (n = 4); or a sham operation (n = 6). At a year after initial surgery, bladder function was assessed in vivo by stimulation of the pelvic plexus. The bladder tissue was harvested for ex vivo smooth muscle contractility studies. Remaining bladder was evaluated for nerve morphology immunohistochemically using neuronal marker PGP9.5, apoptotic activity using terminal deoxynucleotidyl transferase dUTP nick end labeling, and histopathology using a hematoxylin and eosin stain. RESULTS: Sacral root decentralization did not reduce maximum strength of pelvic plexus stimulation-induced bladder contraction, although long-term sacral dorsal and ventral root plus L7 dorsal root transection significantly decreased contraction strength. Electric field stimulation-induced contractions of the detrusor from all decentralized animals were preserved, compared to controls. Viable nerves and intramural ganglia were visualized in the bladder wall, regardless of group. There was no difference in amount of apoptosis in bladder smooth muscle between groups. CONCLUSION: Bladder smooth muscle cells maintain their function after long-term bladder decentralization. While pelvic plexus-induced bladder contractions were less robust at 1 year after lower spinal root transection, the absence of atrophy and preservation of at least some nerve activity may allow for successful surgical reinnervation after long-term injury.


Assuntos
Estado de Descerebração/fisiopatologia , Músculo Liso/fisiopatologia , Bexiga Urinária/lesões , Bexiga Urinária/inervação , Animais , Cães , Estimulação Elétrica , Feminino , Plexo Hipogástrico/lesões , Marcação In Situ das Extremidades Cortadas , Contração Muscular , Músculo Liso/inervação , Regeneração Nervosa , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/fisiopatologia
8.
Neurourol Urodyn ; 37(1): 153-162, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29314212

RESUMO

AIMS: Lumbar to sacral rerouting surgery can potentially allow voiding via a skin-central nervous system-bladder reflex pathway. Here, we assessed if this surgery was effective in treating neurogenic bladder dysfunction/sphincter in felines. METHODS: Eight cats underwent spinal cord transection (SCT) at thoracic level 10/11. Unilateral L7 to S1 ventral root anastomosis was performed 1 month later in six cats. Two cats served as transection-only controls. Electrical and manual stimulation of L6-S1 dermatomes, and urodynamics were performed at 3, 5, 7, and 9/10 months post transection. At 9/10 months, cats were also evaluated by direct electrophysiological testing of anastomosed roots with urodynamics, then tissue collection and examination of the root anastomosis site and lumbosacral cord ventral horns for cells retrogradely labeled from tracer dye injected 2 weeks earlier into the bladder wall. RESULTS: At 9/10 months, four of six rerouted cats exhibited increased detrusor pressure provoked by cutaneous stimulation, one cat bilaterally. Two cats presented with a voiding stream after ipsilateral cutaneous stimulation at 7 and 9 months. All six rerouted animals showed regrowth of axons from the L7 ventral horn to the bladder, although some aberrant axonal regrowth was also observed. CONCLUSION: L7 to S1 ventral root rerouting below the level of SCT showed successful axonal regrowth to the bladder from the L7 spinal cord segment in all rerouted animals, and induced increased detrusor pressure response to cutaneous stimulation in a subset. This feasibility study paves the way for future animal studies for bladder reinnervation.


Assuntos
Anastomose Cirúrgica/métodos , Sacro/cirurgia , Traumatismos da Medula Espinal/cirurgia , Raízes Nervosas Espinhais/cirurgia , Bexiga Urinaria Neurogênica/cirurgia , Urodinâmica/fisiologia , Animais , Gatos , Estudos de Viabilidade , Projetos Piloto , Sacro/fisiopatologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia , Raízes Nervosas Espinhais/fisiopatologia , Bexiga Urinaria Neurogênica/etiologia , Bexiga Urinaria Neurogênica/fisiopatologia , Micção/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA