Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 28461, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27380896

RESUMO

Type 2 diabetes (T2D) is characterized by insulin resistance and reduced functional ß-cell mass. Developmental differences, failure of adaptive expansion and loss of ß-cells via ß-cell death or de-differentiation have emerged as the possible causes of this reduced ß-cell mass. We hypothesized that the proliferative response to mitogens of human ß-cells from T2D donors is reduced, and that this might contribute to the development and progression of T2D. Here, we demonstrate that the proliferative response of human ß-cells from T2D donors in response to cdk6 and cyclin D3 is indeed dramatically impaired. We show that this is accompanied by increased nuclear abundance of the cell cycle inhibitor, p27(kip1). Increasing nuclear abundance of p27(kip1) by adenoviral delivery decreases the proliferative response of ß-cells from non-diabetic donors, mimicking T2D ß-cells. However, while both p27(kip1) gene silencing and downregulation by Skp2 overexpression increased similarly the proliferative response of human ß-cells, only Skp2 was capable of inducing a significant human ß-cell expansion. Skp2 was also able to double the proliferative response of T2D ß-cells. These studies define c-Myc as a central Skp2 target for the induction of cell cycle entry, expansion and regeneration of human T2D ß-cells.


Assuntos
Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Ciclina D3/genética , Ciclina D3/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Regulação para Baixo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Quinases Associadas a Fase S/genética
2.
Diabetes ; 64(10): 3485-98, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26159177

RESUMO

ß-Cell regeneration is a key goal of diabetes research. Progression through the cell cycle is associated with retinoblastoma protein (pRb) inactivation via sequential phosphorylation by the "early" cyclins and cyclin-dependent kinases (cdks) (d-cyclins cdk4/6) and the "late" cyclins and cdks (cyclin A/E and cdk1/2). In ß-cells, activation of either early or late G1/S cyclins and/or cdks is an efficient approach to induce cycle entry, but it is unknown whether the combined expression of early and late cyclins and cdks might have synergistic or additive effects. Thus, we explored whether a combination of both early and late cyclins and cdks might more effectively drive human ß-cell cell cycle entry than either group alone. We also sought to determine whether authentic replication with the expansion of adult human ß-cells could be demonstrated. Late cyclins and cdks do not traffic in response to the induction of replication by early cyclins and cdks in human ß-cells but are capable of nuclear translocation when overexpressed. Early plus late cyclins and cdks, acting via pRb phosphorylation on distinct residues, complementarily induce greater proliferation in human ß-cells than either group alone. Importantly, the combination of early and late cyclins and cdks clearly increased human ß-cell numbers in vitro. These findings provide additional insight into human ß-cell expansion. They also provide a novel tool for assessing ß-cell expansion in vitro.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Células Secretoras de Insulina/metabolismo , Envelhecimento , Animais , Proliferação de Células/fisiologia , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Regulação da Expressão Gênica/fisiologia , Glucose/farmacologia , Humanos , Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Fosforilação , Ratos , Ratos Sprague-Dawley , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
3.
PLoS One ; 8(6): e64946, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840313

RESUMO

Genome-wide association (GWA) studies have described a large number of new candidate genes that contribute to of Type 2 Diabetes (T2D). In some cases, small clusters of genes are implicated, rather than a single gene, and in all cases, the genetic contribution is not defined through the effects on a specific organ, such as the pancreas or liver. There is a significant need to develop and use human cell-based models to examine the effects these genes may have on glucose regulation. We describe the development of a primary human hepatocyte model that adjusts glucose disposition according to hormonal signals. This model was used to determine whether candidate genes identified in GWA studies regulate hepatic glucose disposition through siRNAs corresponding to the list of identified genes. We find that several genes affect the storage of glucose as glycogen (glycolytic response) and/or affect the utilization of pyruvate, the critical step in gluconeogenesis. Of the genes that affect both of these processes, CAMK1D, TSPAN8 and KIF11 affect the localization of a mediator of both gluconeogenesis and glycolysis regulation, CRTC2, to the nucleus in response to glucagon. In addition, the gene CDKAL1 was observed to affect glycogen storage, and molecular experiments using mutant forms of CDK5, a putative target of CDKAL1, in HepG2 cells show that this is mediated by coordinate regulation of CDK5 and PKA on MEK, which ultimately regulates the phosphorylation of ribosomal protein S6, a critical step in the insulin signaling pathway.


Assuntos
Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Quinase 5 Dependente de Ciclina/genética , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Interferência de RNA , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Genoma Humano , Estudo de Associação Genômica Ampla , Glucagon/fisiologia , Glicogênio/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosforilação , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células , Processamento de Proteína Pós-Traducional , Transporte Proteico , Ácido Pirúvico/metabolismo , RNA Interferente Pequeno/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , tRNA Metiltransferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA