Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(11): 4603-4612, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37844275

RESUMO

In vitro cell models have undergone a shift from 2D models on glass slides to 3D models that better reflect the native 3D microenvironment. 3D bioprinting promises to progress the field by allowing the high-throughput production of reproducible cell-laden structures with high fidelity. The current stiffness range of printable matrices surrounding the cells that mimic the extracellular matrix environment remains limited. The work presented herein aims to expand the range of stiffnesses by utilizing a four-armed polyethylene glycol with maleimide-functionalized arms. The complementary cross-linkers comprised a matrix metalloprotease-degradable peptide and a four-armed thiolated polymer which were adjusted in ratio to tune the stiffness. The modularity of this system allows for a simple method of controlling stiffness and the addition of biological motifs. The application of this system in drop-on-demand printing is validated using MCF-7 cells, which were monitored for viability and proliferation. This study shows the potential of this system for the high-throughput investigation of the effects of stiffness and biological motif compositions in relation to cell behaviors.


Assuntos
Bioimpressão , Hidrogéis , Humanos , Matriz Extracelular , Vidro , Células MCF-7
2.
Biomacromolecules ; 24(1): 57-68, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36514252

RESUMO

Hydrogels that serve as native extracellular matrix (ECM) mimics are typically naturally derived hydrogels that are physically cross-linked via ionic interactions. This means rapid gelation of synthetic polymers, which give control over the chemical and physical cues in hydrogel formation. Herein, we combine the best of both systems by developing a synthetic hydrogel with ionic cross-linking of block copolyelectrolytes to rapidly create hydrogels. Reversible addition-fragmentation chain-transfer (RAFT) polymerization was used to synthesize oppositely charged polyelectrolyte molecules and, in turn, modulate the mechanical property of stiffness. The mechanical stiffness of a range of 900-3500 Pa was tuned by varying the number of charged ionic groups, the length of the polymer arms, and the polymer concentration. We demonstrate the synthetic polyelectrolyte hydrogel as an ECM mimic for three-dimensional (3D) in vitro cell models using MCF-7 breast cancer cells.


Assuntos
Matriz Extracelular , Hidrogéis , Hidrogéis/química , Polieletrólitos , Matriz Extracelular/química , Polímeros/farmacologia , Polímeros/química , Técnicas de Cultura de Células em Três Dimensões
3.
Macromol Biosci ; 21(9): e2100125, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34173320

RESUMO

In vitro 3D cell models have been accepted to better recapitulate aspects of in vivo organ environment than 2D cell culture. Currently, the production of these complex in vitro 3D cell models with multiple cell types and microenvironments remains challenging and prone to human error. Here, a versatile ink comprising a 4-arm poly(ethylene glycol) (PEG)-based polymer with distal maleimide derivatives as the main ink component and a bis-thiol species as the activator that crosslinks the polymer to form the hydrogel in less than a second is reported. The rapid gelation makes the polymer system compatible with 3D bioprinting. The ink is combined with a novel drop-on-demand 3D bioprinting platform, designed specifically for producing 3D cell cultures, consisting of eight independently addressable nozzles and high-throughput printing logic for creating complex 3D cell culture models. The combination of multiple nozzles and fast printing logic enables the rapid preparation of many complex 3D cell cultures comprising multiple hydrogel environments in one structure in a standard 96-well plate format. The platform's compatibility for biological applications is validated using pancreatic ductal adenocarcinoma cancer (PDAC) and human dermal fibroblast cells with their phenotypic responses controlled by tuning the hydrogel microenvironment.


Assuntos
Bioimpressão , Técnicas de Cultura de Células em Três Dimensões , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Tinta , Impressão Tridimensional , Engenharia Tecidual
4.
Adv Healthc Mater ; 9(13): e2000261, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424998

RESUMO

There is a need for improved nanomaterials to simultaneously target cancer cells and avoid non-specific clearance by phagocytes. An ellipsoidal polymersome system is developed with a unique tunable size and shape property. These particles are functionalized with in-house phage-display cell-targeting peptide to target a medulloblastoma cell line in vitro. Particle association with medulloblastoma cells is modulated by tuning the peptide ligand density on the particles. These polymersomes has low levels of association with primary human blood phagocytes. The stealth properties of the polymersomes are further improved by including the peptide targeting moiety, an effect that is likely driven by the peptide protecting the particles from binding blood plasma proteins. Overall, this ellipsoidal polymersome system provides a promising platform to explore tumor cell targeting in vivo.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Linhagem Celular Tumoral , Humanos , Ligantes , Peptídeos
5.
J Med Chem ; 63(5): 2181-2193, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31347843

RESUMO

Medulloblastoma is a malignant brain tumor diagnosed in children. Chemotherapy has improved survival rates to approximately 70%; however, children are often left with long-term treatment side effects. New therapies that maintain a high cure rate while reducing off-target toxicity are required. We describe for the first time the use of a bacteriophage-peptide display library to identify heptapeptides that bind to medulloblastoma cells. Two heptapeptides that demonstrated high [E1-3 (1)] or low [E1-7 (2)] medulloblastoma cell binding affinity were synthesized. The potential of the peptides to deliver a therapeutic drug to medulloblastoma cells with specificity was investigated by conjugating E1-3 (1) or E1-7 (2) to doxorubicin (5). Both peptide-drug conjugates were cytotoxic to medulloblastoma cells. E1-3 doxorubicin (3) could permeabilize an in vitro blood-brain barrier and showed a marked reduction in cytotoxicity compared to free doxorubicin (5) in nontumor cells. This study provides proof-of-concept for developing peptide-drug conjugates to inhibit medulloblastoma cell growth while minimizing off-target toxicity.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Doxorrubicina/administração & dosagem , Portadores de Fármacos/metabolismo , Meduloblastoma/tratamento farmacológico , Oligopeptídeos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Criança , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Meduloblastoma/metabolismo , Oligopeptídeos/química , Biblioteca de Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA