Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34442710

RESUMO

To date, several cases of thrombosis have been confirmed to be related to Sars-CoV-2 infection. Multiple attempts detected the prolonged occurrence of Sars-CoV-2 viral RNA (long COVID) in whole blood suggesting that virus byproducts may remain within cells and tissues well over the disease has finished. Patients may develop severe thrombocytopenia, acute anemia of inflammation and, systemic thrombosis with the fatal course of disease, which is suggestive of further interferences of Sars-CoV-2 on hematopoietic stem cells (HSCs) within the differentiation process towards erythroid and megakaryocytic cells. Therefore, we speculated whether Sars-CoV-2 propagates in or compartmentalizes with hematopoietic progenitor, erythroid, and megakaryocytic cells as the main cause of thrombotic events in either COVID-19 patients or vaccinated individuals. Results: The Sars-CoV-2 RNA replication, protein translation and infectious particle formation as the spike proteins in hematopoietic cell lines take place via the angiotensin-converting enzyme 2 (ACE2) entry pathway within primary CD34+ HSCs inducing, ex vivo, the formation of defected erythroid and megakaryocytic cells that eventually become targets of humoral and adaptive immune cells. Conclusions: Viral particles from affected CD34+ HSCs or the cellular component of RBC units and eventually platelets, present the greatest risk for sever thrombosis-transmitted Sars-CoV-2 infections.

2.
Cell Tissue Bank ; 11(3): 269-80, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19565355

RESUMO

It is well accepted that human umbilical cord blood (UCB) is a source of mesenchymal stem cells (MSCs) which are able to differentiate into different cell phenotypes such as osteoblasts, chondrocytes, adipocytes, myocytes, cardiomyocytes and neurons. The aim of this study was to isolate MSCs from human UCB to determine their osteogenic potential by using different kinds of osteogenic medium. Eventually, only those MSCs cultured in osteogenic media enriched with vitamin D(2) and FGF9, were positive for osteocalcin by RT-PCR. All these cells were positive for alizarin red, alkaline phosphatase and Von Kossa. The results obtained from RT-PCR have confirmed that osteogenesis is complete by expression of the osteocalcin marker. In conclusion, vitamin D(2), at least in vitro, may replace vitamin D(3) as an osteogenic stimulator factor for MSC differentiation.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Sangue Fetal/citologia , Osteoblastos/citologia , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/farmacologia , Ergocalciferóis/farmacologia , Fator 9 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA