Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(6): 1705-1715, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38726686

RESUMO

The spatial sorting of cells into appropriate tissue compartments is essential for embryogenesis and tissue development. Spatial cell sorting is controlled by the interplay between cell surface affinity and intracellular mechanical properties. However, intracellular signaling that can sufficiently sort cell populations remains unexplored. In this study, we engineered chimeric cadherins by replacing the cadherin intracellular domain with cytoskeletal regulators to test their ability to induce spatial cell sorting. Using a fibroblast-based reconstitution system, we observed that Rac1 and RhoA activity in the cadherin tail induced outward and inward sorting, respectively. In particular, RhoA activity embedded cells toward the inside of E-cadherin-expressing spheroids and tumor spheroids, leading to tissue invagination. Despite the simplicity of chimeric cadherin design, our results indicate that differences in cadherin intracellular activities can determine the direction of spatial cell sorting, even when cell surface affinity is not different, and provide new molecular tools to engineer tissue architectures.


Assuntos
Caderinas , Proteínas rac1 de Ligação ao GTP , Proteína rhoA de Ligação ao GTP , Caderinas/metabolismo , Caderinas/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Humanos , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Animais , Camundongos , Fibroblastos/metabolismo , Fibroblastos/citologia , Esferoides Celulares/metabolismo
2.
Inflamm Regen ; 44(1): 15, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491394

RESUMO

Cancer cell therapy, particularly chimeric antigen receptor (CAR) T-cell therapy for blood cancers, has emerged as a powerful new modality for cancer treatment. Therapeutic cells differ significantly from conventional drugs, such as small molecules and biologics, as they possess cellular information processing abilities to recognize and respond to abnormalities in the body. This capability enables the targeted delivery of therapeutic factors to specific locations and times. Various types of designer cells have been developed and tested to overcome the shortcomings of CAR T cells and expand their functions in the treatment of solid tumors. In particular, synthetic receptor technologies are a key to designing therapeutic cells that specifically improve tumor microenvironment. Such technologies demonstrate great potential for medical applications to regenerate damaged tissues as well that are difficult to cure with conventional drugs. In this review, we introduce recent developments in next-generation therapeutic cells for cancer treatment and discuss the application of designer therapeutic cells for tissue regeneration.

3.
Cell Rep ; 40(2): 111078, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830802

RESUMO

In vertebrates, newly emerging transformed cells are often apically extruded from epithelial layers through cell competition with surrounding normal epithelial cells. However, the underlying molecular mechanism remains elusive. Here, using phospho-SILAC screening, we show that phosphorylation of AHNAK2 is elevated in normal cells neighboring RasV12 cells soon after the induction of RasV12 expression, which is mediated by calcium-dependent protein kinase C. In addition, transient upsurges of intracellular calcium, which we call calcium sparks, frequently occur in normal cells neighboring RasV12 cells, which are mediated by mechanosensitive calcium channel TRPC1 upon membrane stretching. Calcium sparks then enhance cell movements of both normal and RasV12 cells through phosphorylation of AHNAK2 and promote apical extrusion. Moreover, comparable calcium sparks positively regulate apical extrusion of RasV12-transformed cells in zebrafish larvae as well. Hence, calcium sparks play a crucial role in the elimination of transformed cells at the early phase of cell competition.


Assuntos
Sinalização do Cálcio , Peixe-Zebra , Animais , Cálcio/metabolismo , Movimento Celular , Cães , Células Epiteliais/metabolismo , Células Madin Darby de Rim Canino , Peixe-Zebra/metabolismo
4.
Curr Top Dev Biol ; 114: 267-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431571

RESUMO

Apoptotic cells are engulfed and digested by macrophages to maintain homeostasis in animals. If dead cells are not engulfed swiftly, they undergo secondary necrosis and release intracellular components that activate the immune system. Apoptotic cells are efficiently cleared due to phosphatidylserine (PtdSer) exposed on the cell surface that acts as an "eat me" signal. PtdSer is exposed through the activation of phospholipid scramblase and the inactivation of phospholipid flippase, which are both caspase-mediated events. Macrophages express a variety of molecules to recognize PtdSer, and use a sophisticated mechanism to engulf apoptotic cells. In red blood cells, the nucleus is lost when it is extruded as a pyrenocyte during definitive erythropoiesis. These pyrenocytes (nuclei surrounded by plasma membrane) also expose PtdSer on their surface and are efficiently engulfed by macrophages in a PtdSer-dependent manner. Macrophages transfer the engulfed apoptotic cell or pyrenocyte into lysosomes, where the components of the dead cell or pyrenocyte are degraded. If lysosomes cannot digest the DNA from apoptotic cells or pyrenocytes, the undigested DNA accumulates in the lysosome and activates macrophages to produce type I interferon (IFN) via a STING-dependent pathway; in embryos, this causes severe anemia. Here, we discuss how macrophages clear apoptotic cells and pyrenocytes.


Assuntos
Apoptose/fisiologia , Eritrócitos/fisiologia , Macrófagos/fisiologia , Anemia/metabolismo , Anemia/patologia , Animais , Artrite/metabolismo , Artrite/patologia , Eritropoese , Humanos , Imunidade Inata/genética , Lisossomos/genética , Lisossomos/metabolismo , Macrófagos/citologia , Biologia Molecular/métodos , Fagócitos/fisiologia , Fosfatidilserinas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
5.
Blood ; 123(25): 3963-71, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24659633

RESUMO

Definitive erythropoiesis takes place at erythroblastic islands, where erythroblasts proliferate and differentiate in association with central macrophages. At the final stage of erythropoiesis, pyrenocytes (nuclei surrounded by plasma membranes) are excluded from erythroblasts, expose phosphatidylserine (PtdSer), and are engulfed by the macrophages in a PtdSer-dependent manner. However, the molecular mechanism(s) involved in the engulfment of pyrenocytes are incompletely understood. Here, we constructed an in vitro assay system for the enucleation and engulfment of pyrenocytes using a methylcellulose-based culture. As reported previously, erythroblasts were bound to macrophages via interactions between integrin-α4ß1 on erythroblasts and Vcam1 on macrophages. After enucleation, the resulting pyrenocytes exhibited a reduced affinity for Vcam1 that correlated with the presence of inactive integrin-α4ß1 complexes. The pyrenocytes were then engulfed by the macrophages via a MerTK-protein S-dependent mechanism. Protein S appeared to function as a bridge between the pyrenocytes and macrophages by binding to PtdSer on the pyrenocytes and MerTK on the macrophages. Normally, NIH3T3 cells do not engulf pyrenocytes, but when they were transformed with MerTK, they efficiently engulfed pyrenocytes in the presence of protein S. These results suggest that macrophages use similar mechanisms to engulf both pyrenocytes and apoptotic cells.


Assuntos
Eritroblastos/metabolismo , Eritrócitos/metabolismo , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Apoptose , Linhagem Celular , Núcleo Celular/metabolismo , Células Cultivadas , Eritroblastos/citologia , Eritroblastos/ultraestrutura , Membrana Eritrocítica/metabolismo , Eritrócitos/citologia , Eritropoese , Células HEK293 , Humanos , Integrina alfa4beta1/genética , Integrina alfa4beta1/metabolismo , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Células NIH 3T3 , Fagocitose , Ligação Proteica , Proteína S/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Reticulócitos/citologia , Reticulócitos/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , c-Mer Tirosina Quinase
6.
Mol Cell Biol ; 34(8): 1512-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24515440

RESUMO

Apoptotic cells are swiftly engulfed by macrophages to prevent the release of noxious materials from dying cells. Apoptotic cells expose phosphatidylserine (PtdSer) on their surface, and macrophages engulf them by recognizing PtdSer using specific receptors and opsonins. Here, we found that mouse resident peritoneal macrophages expressing Tim4 and MerTK are highly efficient at engulfing apoptotic cells. Neutralizing antibodies against either Tim4 or MerTK inhibited the macrophage engulfment of apoptotic cells. Tim4-null macrophages exhibited reduced binding and engulfment of apoptotic cells, whereas MerTK-null macrophages retained the ability to bind apoptotic cells but failed to engulf them. The incubation of wild-type peritoneal macrophages with apoptotic cells induced the rapid tyrosine phosphorylation of MerTK, which was not observed with Tim4-null macrophages. When mouse Ba/F3 cells were transformed with Tim4, apoptotic cells bound to the transformants but were not engulfed. Transformation of Ba/F3 cells with MerTK had no effect on the binding or engulfment of apoptotic cells; however, Tim4/MerTK transformants exhibited strong engulfment activity. Taken together, these results indicate that the engulfment of apoptotic cells by resident peritoneal macrophages proceeds in two steps: binding to Tim4, a PtdSer receptor, followed by MerTK-mediated cell engulfment.


Assuntos
Apoptose/fisiologia , Macrófagos Peritoneais/imunologia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/imunologia , Fosfatidilserinas/imunologia , Fosfatidilserinas/metabolismo , Receptores de Superfície Celular/metabolismo , c-Mer Tirosina Quinase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA