Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14332, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906973

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of an uninterrupted polyglutamine (polyQ) repeat in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in fruit fly survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.


Assuntos
Ataxina-7 , Modelos Animais de Doenças , Peptídeos , Ataxias Espinocerebelares , Animais , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/metabolismo , Ataxina-7/genética , Ataxina-7/metabolismo , Humanos , Peptídeos/metabolismo , Peptídeos/genética , Drosophila/genética , Animais Geneticamente Modificados , Progressão da Doença , Drosophila melanogaster/genética , Retina/metabolismo , Retina/patologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
2.
Elife ; 112022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35170431

RESUMO

Endurance exercise is a potent intervention with widespread benefits proven to reduce disease incidence and impact across species. While endurance exercise supports neural plasticity, enhanced memory, and reduced neurodegeneration, less is known about the effect of chronic exercise on the progression of movement disorders such as ataxias. Here, we focused on three different types of ataxias, spinocerebellar ataxias type (SCAs) 2, 3, and 6, belonging to the polyglutamine (polyQ) family of neurodegenerative disorders. In Drosophila models of these SCAs, flies progressively lose motor function. In this study, we observe marked protection of speed and endurance in exercised SCA2 flies and modest protection in exercised SCA6 models, with no benefit to SCA3 flies. Causative protein levels are reduced in SCA2 flies after chronic exercise, but not in SCA3 models, linking protein levels to exercise-based benefits. Further mechanistic investigation indicates that the exercise-inducible protein, Sestrin (Sesn), suppresses mobility decline and improves early death in SCA2 flies, even without exercise, coincident with disease protein level reduction and increased autophagic flux. These improvements partially depend on previously established functions of Sesn that reduce oxidative damage and modulate mTOR activity. Our study suggests differential responses of polyQ SCAs to exercise, highlighting the potential for more extensive application of exercise-based therapies in the prevention of polyQ neurodegeneration. Defining the mechanisms by which endurance exercise suppresses polyQ SCAs will open the door for more effective treatment for these diseases.


Assuntos
Drosophila , Treino Aeróbico/métodos , Ataxias Espinocerebelares/terapia , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Exercício Físico , Humanos , Oxirredução , Oxirredutases/metabolismo , Peptídeos/metabolismo , Fenótipo , Serina-Treonina Quinases TOR/metabolismo , Expansão das Repetições de Trinucleotídeos
3.
Biochim Biophys Acta Mol Cell Res ; 1868(11): 119101, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34280426

RESUMO

A critical unknown in the field of skeletal metastases is how cancer cells find a way to thrive under harsh conditions, as exemplified by metastatic colonization of adipocyte-rich bone marrow by prostate carcinoma cells. To begin understanding molecular processes that enable tumor cells to survive and progress in difficult microenvironments such as bone, we performed unbiased examination of the transcriptome of two different prostate cancer cell lines in the absence or presence of bone marrow adipocytes. Our RNAseq analyses and subsequent quantitative PCR and protein-based assays reveal that upregulation of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) genes is a shared signature between metastatic prostate carcinoma cell lines of different origin. Pathway analyses and pharmacological examinations highlight the ER chaperone BIP as an upstream coordinator of this transcriptomic signature. Additional patient-based data support our overall conclusion that ER stress and UPR induction are shared, important factors in the response and adaptation of metastatic tumor cells to their micro-environment. Our studies pave the way for additional mechanistic investigations and offer new clues towards effective therapeutic interventions in metastatic disease.


Assuntos
Adipócitos/metabolismo , Neoplasias da Próstata/genética , Animais , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Humanos , Masculino , Camundongos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA-Seq , Transcriptoma , Resposta a Proteínas não Dobradas/genética
4.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33170804

RESUMO

Polyglutamine (polyQ) diseases are devastating, slowly progressing neurodegenerative conditions caused by expansion of polyQ-encoding CAG repeats within the coding regions of distinct, unrelated genes. In spinal and bulbar muscular atrophy (SBMA), polyQ expansion within the androgen receptor (AR) causes progressive neuromuscular toxicity, the molecular basis of which is unclear. Using quantitative proteomics, we identified changes in the AR interactome caused by polyQ expansion. We found that the deubiquitinase USP7 preferentially interacts with polyQ-expanded AR and that lowering USP7 levels reduced mutant AR aggregation and cytotoxicity in cell models of SBMA. Moreover, USP7 knockdown suppressed disease phenotypes in SBMA and spinocerebellar ataxia type 3 (SCA3) fly models, and monoallelic knockout of Usp7 ameliorated several motor deficiencies in transgenic SBMA mice. USP7 overexpression resulted in reduced AR ubiquitination, indicating the direct action of USP7 on AR. Using quantitative proteomics, we identified the ubiquitinated lysine residues on mutant AR that are regulated by USP7. Finally, we found that USP7 also differentially interacts with mutant Huntingtin (HTT) protein in striatum and frontal cortex of a knockin mouse model of Huntington's disease. Taken together, our findings reveal a critical role for USP7 in the pathophysiology of SBMA and suggest a similar role in SCA3 and Huntington's disease.


Assuntos
Atrofia Bulboespinal Ligada ao X/enzimologia , Peptidase 7 Específica de Ubiquitina/metabolismo , Animais , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/patologia , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Células PC12 , Peptídeos/genética , Peptídeos/metabolismo , Ratos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
5.
Elife ; 92020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32955441

RESUMO

Spinocerebellar ataxia type 3 (SCA3) belongs to the family of polyglutamine neurodegenerations. Each disorder stems from the abnormal lengthening of a glutamine repeat in a different protein. Although caused by a similar mutation, polyglutamine disorders are distinct, implicating non-polyglutamine regions of disease proteins as regulators of pathogenesis. SCA3 is caused by polyglutamine expansion in ataxin-3. To determine the role of ataxin-3's non-polyglutamine domains in disease, we utilized a new, allelic series of Drosophila melanogaster. We found that ataxin-3 pathogenicity is saliently controlled by polyglutamine-adjacent ubiquitin-interacting motifs (UIMs) that enhance aggregation and toxicity. UIMs function by interacting with the heat shock protein, Hsc70-4, whose reduction diminishes ataxin-3 toxicity in a UIM-dependent manner. Hsc70-4 also enhances pathogenicity of other polyglutamine proteins. Our studies provide a unique insight into the impact of ataxin-3 domains in SCA3, identify Hsc70-4 as a SCA3 enhancer, and indicate pleiotropic effects from HSP70 chaperones, which are generally thought to suppress polyglutamine degeneration.


Assuntos
Ataxina-3 , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Peptídeos , Ubiquitina/metabolismo , Motivos de Aminoácidos , Animais , Ataxina-3/química , Ataxina-3/genética , Ataxina-3/metabolismo , Ataxina-3/toxicidade , Drosophila , Proteínas de Drosophila/química , Proteínas de Choque Térmico HSC70/química , Humanos , Larva/metabolismo , Doença de Machado-Joseph/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/toxicidade , Ubiquitina/química
6.
Sci Rep ; 10(1): 13896, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807808

RESUMO

Cancer progression is often accompanied by increased levels of extracellular proteases capable of remodeling the extracellular matrix and promoting pro-cancerous signaling pathways by activating growth factors and receptors. The type II transmembrane serine protease (TTSP) family encompasses several proteases that play critical roles in cancer progression; however, the expression or function of the TTSP TMPRSS13 in carcinogenesis has not been examined. In the present study, we found TMPRSS13 to be differentially expressed at both the transcript and protein levels in human colorectal cancer (CRC). Immunohistochemical analyses revealed consistent high expression of TMPRSS13 protein on the cancer cell surface in CRC patient samples; in contrast, the majority of normal colon samples displayed no detectable expression. On a functional level, TMPRSS13 silencing in CRC cell lines increased apoptosis and impaired invasive potential. Importantly, transgenic overexpression of TMPRSS13 in CRC cell lines increased tolerance to apoptosis-inducing agents, including paclitaxel and HA14-1. Conversely, TMPRSS13 silencing rendered CRC cells more sensitive to these agents. Together, our findings suggest that TMPRSS13 plays an important role in CRC cell survival and in promoting resistance to drug-induced apoptosis; we also identify TMPRSS13 as a potential new target for monotherapy or combination therapy with established chemotherapeutics to improve treatment outcomes in CRC patients.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Proteínas de Membrana/genética , Invasividade Neoplásica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina Endopeptidases/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
7.
J Neurosci Res ; 98(10): 2096-2108, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32643791

RESUMO

Ataxin-3 is a deubiquitinase and polyglutamine disease protein whose cellular properties and functions are not entirely understood. Mutations in ataxin-3 cause spinocerebellar ataxia type 3 (SCA3), a neurodegenerative disorder that is a member of the polyglutamine family of diseases. Two major isoforms arise from alternative splicing of ATXN3 and are differently toxic in vivo as a result of faster proteasomal degradation of one isoform compared to the other. The isoforms vary only at their C-termini, suggesting that the hydrophobic C-terminus of the more quickly degraded form of ataxin-3 (here referred to as isoform 2) functions as a degron-that is, a peptide sequence that expedites the degradation of its host protein. We explored this notion in this study and present evidence that: (a) the C-terminus of ataxin-3 isoform 2 signals its degradation in a proteasome-dependent manner, (b) this effect from the C-terminus of isoform 2 does not require the ubiquitination of ataxin-3, and (c) the isolated C-terminus of isoform 2 can enhance the degradation of an unrelated protein. According to our data, the C-terminus of ataxin-3 isoform 2 is a degron, increasing overall understanding of the cellular properties of the SCA3 protein.


Assuntos
Ataxina-3/genética , Simulação por Computador , Peptídeos/genética , Proteínas Repressoras/genética , Sequência de Aminoácidos , Ataxina-3/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitinação/fisiologia
8.
Neurobiol Dis ; 137: 104697, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31783119

RESUMO

Spinocerebellar Ataxia type 3 (SCA3, also known as Machado-Joseph disease) is a neurodegenerative disorder caused by a CAG repeat expansion encoding an abnormally long polyglutamine (polyQ) tract in the disease protein, ataxin-3 (ATXN3). No preventive treatment is yet available for SCA3. Because SCA3 is likely caused by a toxic gain of ATXN3 function, a rational therapeutic strategy is to reduce mutant ATXN3 levels by targeting pathways that control its production or stability. Here, we sought to identify genes that modulate ATXN3 levels as potential therapeutic targets in this fatal disorder. We screened a collection of siRNAs targeting 2742 druggable human genes using a cell-based assay based on luminescence readout of polyQ-expanded ATXN3. From 317 candidate genes identified in the primary screen, 100 genes were selected for validation. Among the 33 genes confirmed in secondary assays, 15 were validated in an independent cell model as modulators of pathogenic ATXN3 protein levels. Ten of these genes were then assessed in a Drosophila model of SCA3, and one was confirmed as a key modulator of physiological ATXN3 abundance in SCA3 neuronal progenitor cells. Among the 15 genes shown to modulate ATXN3 in mammalian cells, orthologs of CHD4, FBXL3, HR and MC3R regulate mutant ATXN3-mediated toxicity in fly eyes. Further mechanistic studies of one of these genes, FBXL3, encoding a F-box protein that is a component of the SKP1-Cullin-F-box (SCF) ubiquitin ligase complex, showed that it reduces levels of normal and pathogenic ATXN3 in SCA3 neuronal progenitor cells, primarily via a SCF complex-dependent manner. Bioinformatic analysis of the 15 genes revealed a potential molecular network with connections to tumor necrosis factor-α/nuclear factor-kappa B (TNF/NF-kB) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways. Overall, we identified 15 druggable genes with diverse functions to be suppressors or enhancers of pathogenic ATXN3 abundance. Among identified pathways highlighted by this screen, the FBXL3/SCF axis represents a novel molecular pathway that regulates physiological levels of ATXN3 protein.


Assuntos
Ataxina-3/genética , Doença de Machado-Joseph/genética , Neurônios/metabolismo , Proteínas Repressoras/genética , Humanos , Doença de Machado-Joseph/patologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/genética
9.
Sci Rep ; 9(1): 19648, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873106

RESUMO

A significant number of people with Parkinson's disease (PD) develop dementia in addition to cognitive dysfunction and are diagnosed as PD with dementia (PDD). This is characterized by cortical and limbic alpha synuclein (α-syn) accumulation, and high levels of diffuse amyloid beta (Aß) plaques in the striatum and neocortical areas. In this regard, we evaluated the effect of a brain-penetrant, novel multifunctional dopamine D2/D3 agonist, D-520 on the inhibition of Aß aggregation and disintegration of α-syn and Aß aggregates in vitro using purified proteins and in a cell culture model that produces intracellular Aß-induced toxicity. We further evaluated the effect of D-520 in a Drosophila model of Aß1-42 toxicity. We report that D-520 inhibits the formation of Aß aggregates in vitro and promotes the disaggregation of both α-syn and Aß aggregates. Finally, in an in vivo Drosophila model of Aß1-42 dependent toxicity, D-520 exhibited efficacy by rescuing fly eyes from retinal degeneration caused by Aß toxicity. Our data indicate the potential therapeutic applicability of D-520 in addressing motor dysfunction and neuroprotection in PD and PDD, as well as attenuating dementia in people with PDD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Demência , Agonistas de Dopamina/farmacologia , Sistemas de Liberação de Medicamentos , Doença de Parkinson , Fragmentos de Peptídeos/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas , alfa-Sinucleína/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Demência/tratamento farmacológico , Demência/genética , Demência/metabolismo , Demência/patologia , Modelos Animais de Doenças , Drosophila melanogaster , Humanos , Células PC12 , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fragmentos de Peptídeos/genética , Ratos , alfa-Sinucleína/genética
10.
J Clin Invest ; 128(8): 3630-3641, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29809168

RESUMO

Skeletal muscle has emerged as a critical, disease-relevant target tissue in spinal and bulbar muscular atrophy, a degenerative disorder of the neuromuscular system caused by a CAG/polyglutamine (polyQ) expansion in the androgen receptor (AR) gene. Here, we used RNA-sequencing (RNA-Seq) to identify pathways that are disrupted in diseased muscle using AR113Q knockin mice. This analysis unexpectedly identified substantially diminished expression of numerous ubiquitin/proteasome pathway genes in AR113Q muscle, encoding approximately 30% of proteasome subunits and 20% of E2 ubiquitin conjugases. These changes were age, hormone, and glutamine length dependent and arose due to a toxic gain of function conferred by the mutation. Moreover, altered gene expression was associated with decreased levels of the proteasome transcription factor NRF1 and its activator DDI2 and resulted in diminished proteasome activity. Ubiquitinated ADRM1 was detected in AR113Q muscle, indicating the occurrence of stalled proteasomes in mutant mice. Finally, diminished expression of Drosophila orthologues of NRF1 or ADRM1 promoted the accumulation of polyQ AR protein and increased toxicity. Collectively, these data indicate that AR113Q muscle develops progressive proteasome dysfunction that leads to the impairment of quality control and the accumulation of polyQ AR protein, key features that contribute to the age-dependent onset and progression of this disorder.


Assuntos
Envelhecimento/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/metabolismo , Peptídeos/metabolismo , Receptores Androgênicos/metabolismo , Expansão das Repetições de Trinucleotídeos , Envelhecimento/genética , Envelhecimento/patologia , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Peptídeos/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Androgênicos/genética
11.
Neurobiol Dis ; 116: 78-92, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29704548

RESUMO

Among the nine dominantly inherited, age-dependent neurodegenerative diseases caused by abnormal expansion in the polyglutamine (polyQ) repeat of otherwise unrelated proteins is Spinocerebellar Ataxia Type 3 (SCA3). SCA3 is caused by polyQ expansion in the deubiquitinase (DUB), ataxin-3. Molecular sequelae related to SCA3 remain unclear. Here, we sought to understand the role of protein context in SCA3 by focusing on the interaction between this DUB and Valosin-Containing Protein (VCP). VCP is bound directly by ataxin-3 through an arginine-rich area preceding the polyQ repeat. We examined the importance of this interaction in ataxin-3-dependent degeneration in Drosophila melanogaster. Our assays with new isogenic fly lines expressing pathogenic ataxin-3 with an intact or mutated VCP-binding site show that disrupting the ataxin-3-VCP interaction delays the aggregation of the toxic protein in vivo. Importantly, early on flies that express pathogenic ataxin-3 with a mutated VCP-binding site are indistinguishable from flies that do not express any SCA3 protein. Also, reducing levels of VCP through RNA-interference has a similar, protective effect to mutating the VCP-binding site of pathogenic ataxin-3. Based on in vivo pulse-chases, aggregated species of ataxin-3 are highly stable, in a manner independent of VCP-binding. Collectively, our results highlight an important role for the ataxin-3-VCP interaction in SCA3, based on a model that posits a seeding effect from VCP on pathogenic ataxin-3 aggregation and subsequent toxicity.


Assuntos
Ataxina-3/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos/metabolismo , Agregados Proteicos/fisiologia , Proteína com Valosina/metabolismo , Animais , Animais Geneticamente Modificados , Ataxina-3/genética , Drosophila melanogaster , Células HEK293 , Humanos , Peptídeos/genética , Ligação Proteica/fisiologia
12.
Neuropharmacology ; 123: 88-99, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28533164

RESUMO

Here, we report the characterization of a novel hybrid D2/D3 agonist and iron (II) specific chelator, D-607, as a multi-target-directed ligand against Parkinson's disease (PD). In our previously published report, we showed that D-607 is a potent agonist of dopamine (DA) D2/D3 receptors, exhibits efficacy in a reserpinized PD animal model and preferentially chelates to iron (II). As further evidence of its potential as a neuroprotective agent in PD, the present study reveals D-607 to be protective in neuronal PC12 cells against 6-OHDA toxicity. In an in vivo Drosophila melanogaster model expressing a disease-causing variant of α-synuclein (α-Syn) protein in fly eyes, the compound was found to significantly suppress toxicity compared to controls, concomitant with reduced levels of aggregated α-Syn. Furthermore, D-607 was able to rescue DAergic neurons from MPTP toxicity in mice, a well-known PD neurotoxicity model, following both sub-chronic and chronic MPTP administration. Mechanistic studies indicated that possible protection of mitochondria, up-regulation of hypoxia-inducible factor, reduction in formation of α-Syn aggregates and antioxidant activity may underlie the observed neuroprotection effects. These observations strongly suggest that D-607 has potential as a promising multifunctional lead molecule for viable symptomatic and disease-modifying therapy for PD.


Assuntos
2,2'-Dipiridil/análogos & derivados , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Piperazinas/farmacologia , alfa-Sinucleína/toxicidade , 2,2'-Dipiridil/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Relação Dose-Resposta a Droga , Drosophila melanogaster , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxidopamina/toxicidade , Células PC12 , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Prolil Hidroxilases/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Ratos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
13.
Hum Mol Genet ; 26(8): 1419-1431, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28158474

RESUMO

Polyglutamine (polyQ) repeat expansion in the deubiquitinase ataxin-3 causes neurodegeneration in Spinocerebellar Ataxia Type 3 (SCA3), one of nine inherited, incurable diseases caused by similar mutations. Ataxin-3's degradation is inhibited by its binding to the proteasome shuttle Rad23 through ubiquitin-binding site 2 (UbS2). Disrupting this interaction decreases levels of ataxin-3. Since reducing levels of polyQ proteins can decrease their toxicity, we tested whether genetically modulating the ataxin-3-Rad23 interaction regulates its toxicity in Drosophila. We found that exogenous Rad23 increases the toxicity of pathogenic ataxin-3, coincident with increased levels of the disease protein. Conversely, reducing Rad23 levels alleviates toxicity in this SCA3 model. Unexpectedly, pathogenic ataxin-3 with a mutated Rad23-binding site at UbS2, despite being present at markedly lower levels, proved to be more pathogenic than a disease-causing counterpart with intact UbS2. Additional studies established that the increased toxicity upon mutating UbS2 stems from disrupting the autoprotective role that pathogenic ataxin-3 has against itself, which depends on the co-chaperone, DnaJ-1. Our data reveal a previously unrecognized balance between pathogenic and potentially therapeutic properties of the ataxin-3-Rad23 interaction; they highlight this interaction as critical for the toxicity of the SCA3 protein, and emphasize the importance of considering protein context when pursuing suppressive avenues.


Assuntos
Ataxina-3/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Doença de Machado-Joseph/genética , Degeneração Neural/genética , Proteínas Repressoras/genética , Animais , Ataxina-3/metabolismo , Sítios de Ligação , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/genética , Humanos , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Chaperonas Moleculares/genética , Degeneração Neural/patologia , Peptídeos/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Ubiquitina/genética
14.
Sci Rep ; 6: 38510, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27917933

RESUMO

Aggregation of alpha synuclein (α-syn) leading to dopaminergic neuronal death has been recognized as one of the main pathogenic factors in the initiation and progression of Parkinson's disease (PD). Consequently, α-syn has been targeted for the development of therapeutics for PD. We have developed a novel assay to screen compounds with α-syn modulating properties by mimicking recent findings from in vivo animal studies involving intrastriatal administration of pre-formed fibrils in mice, resulting in increased α-syn pathology accompanying the formation of Lewy-body (LB) type inclusions. We found that in vitro generated α-syn pre-formed fibrils induce seeding of α-syn monomers to produce aggregates in a dose-and time-dependent manner under static conditions in vitro. These aggregates were toxic towards rat pheochromocytoma cells (PC12). Our novel multifunctional dopamine agonists D-519 and D-520 exhibited significant neuroprotection in this assay, while their parent molecules did not. The neuroprotective properties of our compounds were further evaluated in a Drosophila model of synucleinopathy. Both of our compounds showed protective properties in fly eyes against the toxicity caused by α-syn. Thus, our in vitro results on modulation of aggregation and toxicity of α-syn by our novel assay were further validated with the in vivo experiments.


Assuntos
Bioensaio/métodos , Agonistas de Dopamina/farmacologia , Drosophila melanogaster/metabolismo , Agregados Proteicos/efeitos dos fármacos , alfa-Sinucleína/química , Animais , Benzotiazóis/química , Benzotiazóis/farmacologia , Dicroísmo Circular , Modelos Animais de Doenças , Agonistas de Dopamina/química , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/ultraestrutura , Olho/metabolismo , Células PC12 , Pramipexol , Estrutura Secundária de Proteína , Ratos , Rifampina/química , Rifampina/farmacologia , Tetra-Hidronaftalenos/química , Tetra-Hidronaftalenos/farmacologia , alfa-Sinucleína/toxicidade , alfa-Sinucleína/ultraestrutura
15.
Brain ; 139(11): 2891-2908, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27645800

RESUMO

No disease-modifying treatment exists for the fatal neurodegenerative polyglutamine disease known both as Machado-Joseph disease and spinocerebellar ataxia type 3. As a potential route to therapy, we identified small molecules that reduce levels of the mutant disease protein, ATXN3. Screens of a small molecule collection, including 1250 Food and Drug Administration-approved drugs, in a novel cell-based assay, followed by secondary screens in brain slice cultures from transgenic mice expressing the human disease gene, identified the atypical antipsychotic aripiprazole as one of the hits. Aripiprazole increased longevity in a Drosophila model of Machado-Joseph disease and effectively reduced aggregated ATXN3 species in flies and in brains of transgenic mice treated for 10 days. The aripiprazole-mediated decrease in ATXN3 abundance may reflect a complex response culminating in the modulation of specific components of cellular protein homeostasis. Aripiprazole represents a potentially promising therapeutic drug for Machado-Joseph disease and possibly other neurological proteinopathies.


Assuntos
Antipsicóticos/uso terapêutico , Aripiprazol/uso terapêutico , Ataxina-3/metabolismo , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/metabolismo , Proteínas Mutantes/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Ataxina-3/genética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Modelos Animais de Doenças , Drosophila , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293/efeitos dos fármacos , Células HEK293/metabolismo , Células HEK293/ultraestrutura , Humanos , Doença de Machado-Joseph/genética , Camundongos , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Cultura de Órgãos , Peptídeos/genética , Piperidinas/farmacologia , Piranos/farmacologia , Pirazóis/farmacologia
16.
Neurobiol Dis ; 82: 12-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26007638

RESUMO

Ataxin-3 is a deubiquitinase and polyglutamine (polyQ) disease protein with a protective role in Drosophila melanogaster models of neurodegeneration. In the fruit fly, wild-type ataxin-3 suppresses toxicity from several polyQ disease proteins, including a pathogenic version of itself that causes spinocerebellar ataxia type 3 and pathogenic huntingtin, which causes Huntington's disease. The molecular partners of ataxin-3 in this protective function are unclear. Here, we report that ataxin-3 requires its direct interaction with the ubiquitin-binding and proteasome-associated protein, Rad23 (known as hHR23A/B in mammals) in order to suppress toxicity from polyQ species in Drosophila. According to additional studies, ataxin-3 does not rely on autophagy or the proteasome to suppress polyQ-dependent toxicity in fly eyes. Instead this deubiquitinase, through its interaction with Rad23, leads to increased protein levels of the co-chaperone DnaJ-1 and depends on it to protect against degeneration. Through DnaJ-1, our data connect ataxin-3 and Rad23 to protective processes involved with protein folding rather than increased turnover of toxic polyQ species.


Assuntos
Ataxina-3/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Doenças Neurodegenerativas/metabolismo , Neuroproteção/fisiologia , Animais , Animais Geneticamente Modificados , Ataxina-3/genética , Autofagia/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Choque Térmico HSP40/genética , Doenças Neurodegenerativas/genética , Peptídeos , Dobramento de Proteína
17.
Front Mol Biosci ; 2: 2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25988170

RESUMO

Ataxin-3, the protein responsible for spinocerebellar ataxia type-3, is a cysteine protease that specifically cleaves poly-ubiquitin chains and participates in the ubiquitin proteasome pathway. The enzymatic activity resides in the N-terminal Josephin domain. An unusual feature of ataxin-3 is its low enzymatic activity especially for mono-ubiquitinated substrates and short ubiquitin chains. However, specific ubiquitination at lysine 117 in the Josephin domain activates ataxin-3 through an unknown mechanism. Here, we investigate the effects of K117 ubiquitination on the structure and enzymatic activity of the protein. We show that covalently linked ubiquitin rests on the Josephin domain, forming a compact globular moiety and occupying a ubiquitin binding site previously thought to be essential for substrate recognition. In doing so, ubiquitination enhances enzymatic activity by locking the enzyme in an activated state. Our results indicate that ubiquitin functions both as a substrate and as an allosteric regulatory factor. We provide a novel example in which a conformational switch controls the activity of an enzyme that mediates deubiquitination.

18.
J Neurosci Res ; 92(9): 1100-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24798551

RESUMO

Age-related neurodegeneration has been studied extensively through the use of model organisms, including the genetically versatile Drosophila melanogaster. Various neurotoxic proteins have been expressed in fly eyes to approximate degeneration occurring in humans, and much has been learned from this heterologous system. Although Drosophila expedites scientific research through rapid generational times and relative inexpensiveness, one factor that can hinder analyses is the examination of milder forms of degeneration caused by some toxic proteins in fly eyes. Whereas several disease proteins cause massive degeneration that is easily observed by examining the external structure of the fly eye, others cause mild degeneration that is difficult to observe externally and requires laborious histological preparation to assess and monitor. Here, we describe a sensitive fluorescence-based method to observe, monitor, and quantify mild Drosophila eye degeneration caused by various proteins, including the polyglutamine disease proteins ataxin-3 (spinocerebellar ataxia type 3) and huntingtin (Huntington's disease), mutant α-synuclein (Parkinson's disease), and Aß42 (Alzheimer's disease). We show that membrane-targeted green fluorescent protein reports degeneration robustly and quantitatively. This simple yet powerful technique, which is amenable to large-scale screens, can help accelerate studies to understand age-related degeneration and to find factors that suppress it for therapeutic purposes.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/genética , Peptídeos beta-Amiloides/genética , Animais , Ataxina-3 , Antígenos CD8/genética , Antígenos CD8/metabolismo , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Fluorescência Verde/genética , Humanos , Proteína Huntingtina , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fragmentos de Peptídeos/genética , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , alfa-Sinucleína/genética
19.
FEBS Open Bio ; 3: 453-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24251111

RESUMO

Protein ubiquitination occurs through formation of an isopeptide bond between the C-terminal glycine of ubiquitin (Ub) and the ɛ-amino group of a substrate lysine residue. This post-translational modification, which occurs through the attachment of single and/or multiple copies of mono-ubiquitin and poly-ubiquitin chains, is involved in crucial cellular events such as protein degradation, cell-cycle regulation and DNA repair. The abnormal functioning of ubiquitin pathways is also implicated in the pathogenesis of several human diseases ranging from cancer to neurodegeneration. However, despite the undoubted biological importance, understanding the molecular basis of how ubiquitination regulates different pathways has up to now been strongly limited by the difficulty of producing the amounts of highly homogeneous samples that are needed for a structural characterization by X-ray crystallography and/or NMR. Here, we report on the production of milligrams of highly pure Josephin mono-ubiquitinated on lysine 117 through large scale in vitro enzymatic ubiquitination. Josephin is the catalytic domain of ataxin-3, a protein responsible for spinocerebellar ataxia type 3. Ataxin-3 is the first deubiquitinating enzyme (DUB) reported to be activated by mono-ubiquitination. We demonstrate that the samples produced with the described method are correctly folded and suitable for structural studies. The protocol allows facile selective labelling of the components. Our results provide an important proof-of-concept that may pave the way to new approaches to the in vitro study of ubiquitinated proteins.

20.
J Biol Chem ; 288(26): 18784-8, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23696636

RESUMO

Attachment of ubiquitin to substrate is typically thought to occur via formation of an isopeptide bond between the C-terminal glycine residue of ubiquitin and a lysine residue in the substrate. In vitro, Ube2w is nonreactive with free lysine yet readily ubiquitinates substrate. Ube2w also contains novel residues within its active site that are important for its ability to ubiquitinate substrate. To identify the site of modification, we analyzed ubiquitinated substrates by mass spectrometry and found the N-terminal -NH2 group as the site of conjugation. To confirm N-terminal ubiquitination, we generated lysine-less and N-terminally blocked versions of one substrate, the polyglutamine disease protein ataxin-3, and showed that Ube2w can ubiquitinate a lysine-less, but not N-terminally blocked, ataxin-3. This was confirmed with a second substrate, the neurodegenerative disease protein Tau. Finally, we directly sequenced the N terminus of unmodified and ubiquitinated ataxin-3, demonstrating that Ube2w attaches ubiquitin to the N terminus of its substrates. Together these data demonstrate that Ube2w has novel enzymatic properties that direct ubiquitination of the N terminus of substrates.


Assuntos
Lisina/química , Enzimas de Conjugação de Ubiquitina/química , Ubiquitina/química , Sequência de Aminoácidos , Ataxina-3 , Domínio Catalítico , Cromatografia Líquida , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Peptídeos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/química , Homologia de Sequência de Aminoácidos , Proteínas tau/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA