Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 21(7): 1306-1315, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38649742

RESUMO

Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation pattern that distinguishes weight-stable cancer from cancers associated with weight loss. Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze whole-brain imaging data in health and disease.


Assuntos
Encéfalo , Aprendizado Profundo , Realidade Virtual , Animais , Encéfalo/diagnóstico por imagem , Camundongos , Neurônios , Software , Processamento de Imagem Assistida por Computador/métodos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Humanos
2.
Nat Biotechnol ; 42(4): 617-627, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37430076

RESUMO

Whole-body imaging techniques play a vital role in exploring the interplay of physiological systems in maintaining health and driving disease. We introduce wildDISCO, a new approach for whole-body immunolabeling, optical clearing and imaging in mice, circumventing the need for transgenic reporter animals or nanobody labeling and so overcoming existing technical limitations. We identified heptakis(2,6-di-O-methyl)-ß-cyclodextrin as a potent enhancer of cholesterol extraction and membrane permeabilization, enabling deep, homogeneous penetration of standard antibodies without aggregation. WildDISCO facilitates imaging of peripheral nervous systems, lymphatic vessels and immune cells in whole mice at cellular resolution by labeling diverse endogenous proteins. Additionally, we examined rare proliferating cells and the effects of biological perturbations, as demonstrated in germ-free mice. We applied wildDISCO to map tertiary lymphoid structures in the context of breast cancer, considering both primary tumor and metastases throughout the mouse body. An atlas of high-resolution images showcasing mouse nervous, lymphatic and vascular systems is accessible at http://discotechnologies.org/wildDISCO/atlas/index.php .


Assuntos
Imageamento Tridimensional , Imunoglobulina G , Camundongos , Animais
3.
Cell ; 186(17): 3706-3725.e29, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37562402

RESUMO

The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission tomography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses with a disease-specific spatial distribution in patients with various neurological disorders. The unique molecular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing, monitoring, and treating brain diseases.


Assuntos
Medula Óssea , Doenças do Sistema Nervoso , Crânio , Animais , Humanos , Camundongos , Medula Óssea/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Crânio/citologia , Crânio/diagnóstico por imagem
4.
Nat Protoc ; 18(4): 1197-1242, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36697871

RESUMO

Homeostatic and pathological phenomena often affect multiple organs across the whole organism. Tissue clearing methods, together with recent advances in microscopy, have made holistic examinations of biological samples feasible. Here, we report the detailed protocol for nanobody(VHH)-boosted 3D imaging of solvent-cleared organs (vDISCO), a pressure-driven, nanobody-based whole-body immunolabeling and clearing method that renders whole mice transparent in 3 weeks, consistently enhancing the signal of fluorescent proteins, stabilizing them for years. This allows the reliable detection and quantification of fluorescent signal in intact rodents enabling the analysis of an entire body at cellular resolution. Here, we show the high versatility of vDISCO applied to boost the fluorescence signal of genetically expressed reporters and clear multiple dissected organs and tissues, as well as how to image processed samples using multiple fluorescence microscopy systems. The entire protocol is accessible to laboratories with limited expertise in tissue clearing. In addition to its applications in obtaining a whole-mouse neuronal projection map, detecting single-cell metastases in whole mice and identifying previously undescribed anatomical structures, we further show the visualization of the entire mouse lymphatic system, the application for virus tracing and the visualization of all pericytes in the brain. Taken together, our vDISCO pipeline allows systematic and comprehensive studies of cellular phenomena and connectivity in whole bodies.


Assuntos
Encéfalo , Imageamento Tridimensional , Camundongos , Animais , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Solventes/química , Neuritos , Corantes
5.
Nat Commun ; 11(1): 5626, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159057

RESUMO

Whole-body imaging of mice is a key source of information for research. Organ segmentation is a prerequisite for quantitative analysis but is a tedious and error-prone task if done manually. Here, we present a deep learning solution called AIMOS that automatically segments major organs (brain, lungs, heart, liver, kidneys, spleen, bladder, stomach, intestine) and the skeleton in less than a second, orders of magnitude faster than prior algorithms. AIMOS matches or exceeds the segmentation quality of state-of-the-art approaches and of human experts. We exemplify direct applicability for biomedical research for localizing cancer metastases. Furthermore, we show that expert annotations are subject to human error and bias. As a consequence, we show that at least two independently created annotations are needed to assess model performance. Importantly, AIMOS addresses the issue of human bias by identifying the regions where humans are most likely to disagree, and thereby localizes and quantifies this uncertainty for improved downstream analysis. In summary, AIMOS is a powerful open-source tool to increase scalability, reduce bias, and foster reproducibility in many areas of biomedical research.


Assuntos
Estruturas Animais/diagnóstico por imagem , Aprendizado Profundo , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Feminino , Processamento de Imagem Assistida por Computador , Rim/diagnóstico por imagem , Fígado/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Baço/diagnóstico por imagem , Imagem Corporal Total , Microtomografia por Raio-X
6.
Cell ; 179(7): 1661-1676.e19, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31835038

RESUMO

Reliable detection of disseminated tumor cells and of the biodistribution of tumor-targeting therapeutic antibodies within the entire body has long been needed to better understand and treat cancer metastasis. Here, we developed an integrated pipeline for automated quantification of cancer metastases and therapeutic antibody targeting, named DeepMACT. First, we enhanced the fluorescent signal of cancer cells more than 100-fold by applying the vDISCO method to image metastasis in transparent mice. Second, we developed deep learning algorithms for automated quantification of metastases with an accuracy matching human expert manual annotation. Deep learning-based quantification in 5 different metastatic cancer models including breast, lung, and pancreatic cancer with distinct organotropisms allowed us to systematically analyze features such as size, shape, spatial distribution, and the degree to which metastases are targeted by a therapeutic monoclonal antibody in entire mice. DeepMACT can thus considerably improve the discovery of effective antibody-based therapeutics at the pre-clinical stage. VIDEO ABSTRACT.


Assuntos
Anticorpos/uso terapêutico , Aprendizado Profundo , Diagnóstico por Computador/métodos , Quimioterapia Assistida por Computador/métodos , Neoplasias/patologia , Animais , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Metástase Neoplásica , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Software , Microambiente Tumoral
7.
Mol Neurobiol ; 55(5): 4253-4266, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28620701

RESUMO

Chronic cerebral hypoperfusion (CCH) evokes mild cognitive impairment (MCI) and contributes to the progression of vascular dementia and Alzheimer's disease (AD). How CCH induces these neurodegenerative processes that may spread along the synaptic network and whether they are detectable at the synaptic proteome level of the cerebral cortex remains to be established. In the present study, we report the synaptic protein changes in the cerebral cortex after stepwise bilateral common carotid artery occlusion (BCCAO) induced CCH in the rat. The occlusions were confirmed with magnetic resonance angiography 5 weeks after the surgery. Synaptosome fractions were prepared using sucrose gradient centrifugation from cerebral cortex dissected 7 weeks after the occlusion. The synaptic protein differences between the sham operated and CCH groups were analyzed with label-free nanoUHPLC-MS/MS. We identified 46 proteins showing altered abundance due to CCH. In particular, synaptic protein and lipid metabolism, as well as GABA shunt-related proteins showed increased while neurotransmission and synaptic assembly-related proteins showed decreased protein level changes in CCH rats. Protein network analysis of CCH-induced protein alterations suggested the importance of increased synaptic apolipoprotein E (APOE) level as a consequence of CCH. Therefore, the change in APOE level was confirmed with Western blotting. The identified synaptic protein changes would precede the onset of dementia-like symptoms in the CCH model, suggesting their importance in the development of vascular dementia.


Assuntos
Córtex Cerebral/metabolismo , Circulação Cerebrovascular , Proteoma/metabolismo , Sinapses/metabolismo , Animais , Apolipoproteínas E/metabolismo , Córtex Cerebral/diagnóstico por imagem , Angiografia por Ressonância Magnética , Masculino , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Ratos Wistar , Reprodutibilidade dos Testes , Sinapses/ultraestrutura , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
8.
Brain Res Bull ; 124: 172-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27154620

RESUMO

The non-adenosine nucleoside guanosine (Guo) was demonstrated to decrease quinolinic acid(QA)-induced seizures, spontaneously emerged absence epileptic seizures and lipopolysaccharide(LPS)-evoked induction of absence epileptic seizures suggesting its antiepileptic potential. It was also described previously that intraperitoneal (i.p.) injection of 20 and 50mg/kg Guo decreased the number of spike-wave discharges (SWDs) in a well investigated model of human absence epilepsy, the Wistar Albino Glaxo Rijswijk (WAG/Rij) rats during 4th (20mg/kg Guo) and 3rd as well as 4th (50mg/kg Guo) measuring hours. Guanosine can potentially decrease SWD number by means of its putative receptors but absence epileptic activity changing effects of Guo by means of increased extracellular adenosine (Ado) cannot be excluded. An increase in the dose of i.p. injected Guo is limited by its low solubility in saline, therefore, we addressed in the present study whether higher doses of Guo, diluted in sodium hydroxide (NaOH) solution, have more potent antiepileptic effect in WAG/Rij rats. We confirmed that i.p. 50mg/kg Guo decreased but, surprisingly, i.p. 100mg/kg Guo enhanced the number of SWDs in WAG/Rij rats. Combined i.p. injection of a non-selective Ado receptor antagonist theophylline (5mg/kg) or a selective Ado A2A receptor (A2AR) antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) (1mg/kg) and a cyclooxygenase 1 and 2/COX-1 and COX-2 inhibitor indomethacin (10mg/kg) with 100mg/kg Guo decreased the SWD number compared to i.p. 100mg/kg Guo alone. The results suggest that i.p. 100mg/kg Guo can increase SWD number by means of the adenosinergic system.


Assuntos
Anticonvulsivantes/efeitos adversos , Epilepsia Tipo Ausência/induzido quimicamente , Guanosina/efeitos adversos , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletroencefalografia , Análise de Fourier , Indometacina/farmacologia , Lipopolissacarídeos/toxicidade , Antagonistas de Receptores Purinérgicos P1/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Teofilina/farmacologia , Fatores de Tempo , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA