Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1405597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983846

RESUMO

Endometriosis (EM) is defined as the engraftment and proliferation of functional endometrial-like tissue outside the uterine cavity, leading to a chronic inflammatory condition. While the precise etiology of EM remains elusive, recent studies have highlighted the crucial involvement of a dysregulated immune system. The complement system is one of the predominantly altered immune pathways in EM. Owing to its involvement in the process of angiogenesis, here, we have examined the possible role of the first recognition molecule of the complement classical pathway, C1q. C1q plays seminal roles in several physiological and pathological processes independent of complement activation, including tumor growth, placentation, wound healing, and angiogenesis. Gene expression analysis using the publicly available data revealed that C1q is expressed at higher levels in EM lesions compared to their healthy counterparts. Immunohistochemical analysis confirmed the presence of C1q protein, being localized around the blood vessels in the EM lesions. CD68+ macrophages are the likely producer of C1q in the EM lesions since cultured EM cells did not produce C1q in vitro. To explore the underlying reasons for increased C1q expression in EM, we focused on its established pro-angiogenic role. Employing various angiogenesis assays on primary endothelial endometriotic cells, such as migration, proliferation, and tube formation assays, we observed a robust proangiogenic effect induced by C1q on endothelial cells in the context of EM. C1q promoted angiogenesis in endothelial cells isolated from EM lesions (as well as healthy ovary that is also rich in C1q). Interestingly, endothelial cells from EM lesions seem to overexpress the receptor for the globular heads of C1q (gC1qR), a putative C1q receptor. Experiments with siRNA to silence gC1qR resulted in diminished capacity of C1q to perform its angiogenic functions, suggesting that C1q is likely to engage gC1qR in the pathophysiology of EM. gC1qR can be a potential therapeutic target in EM patients that will disrupt C1q-mediated proangiogenic activities in EM.


Assuntos
Complemento C1q , Endometriose , Neovascularização Patológica , Endometriose/metabolismo , Endometriose/imunologia , Endometriose/patologia , Endometriose/genética , Complemento C1q/genética , Complemento C1q/metabolismo , Humanos , Feminino , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Endométrio/imunologia , Endométrio/metabolismo , Endométrio/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Células Cultivadas , Adulto , Proliferação de Células
2.
Front Immunol ; 12: 693118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489939

RESUMO

The complement system is a major component of humoral innate immunity, acting as a first line of defense against microbes via opsonization and lysis of pathogens. However, novel roles of the complement system in inflammatory and immunological processes, including in cancer, are emerging. Endometriosis (EM), a benign disease characterized by ectopic endometrial implants, shows certain unique features of cancer, such as the capacity to invade surrounding tissues, and in severe cases, metastatic properties. A defective immune surveillance against autologous tissue deposited in the peritoneal cavity allows immune escape for endometriotic lesions. There is evidence that the glandular epithelial cells found in endometriotic implants produce and secrete the complement component C3. Here, we show, using immunofluorescence and RT-qPCR, the presence of locally synthesized C3 in the ectopic endometriotic tissue, but not in the eutopic tissue. We generated a murine model of EM via injection of minced uterine tissue from a donor mouse into the peritoneum of recipient mice. The wild type mice showed greater amount of cyst formation in the peritoneum compared to C3 knock-out mice. Peritoneal washings from the wild type mice with EM showed more degranulated mast cells compared to C3 knock-out mice, consistent with higher C3a levels in the peritoneal fluid of EM patients. We provide evidence that C3a participates in an auto-amplifying loop leading to mast cell infiltration and activation, which is pathogenic in EM. Thus, C3 can be considered a marker of EM and its local synthesis can promote the engraftment of the endometriotic cysts.


Assuntos
Degranulação Celular , Complemento C3/metabolismo , Endometriose/metabolismo , Endométrio/metabolismo , Mediadores da Inflamação/metabolismo , Mastócitos/metabolismo , Doenças Peritoneais/metabolismo , Animais , Estudos de Casos e Controles , Técnicas de Cocultura , Complemento C3/genética , Complemento C3a/metabolismo , Modelos Animais de Doenças , Endometriose/genética , Endometriose/imunologia , Endométrio/efeitos dos fármacos , Endométrio/imunologia , Endométrio/transplante , Feminino , Células Hep G2 , Humanos , Imunidade Humoral , Imunidade Inata , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Peritoneais/genética , Doenças Peritoneais/imunologia , Transdução de Sinais , Células THP-1 , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA