Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Innate Immun ; 13(3): 148-163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33333522

RESUMO

Helminth and Mycobacterium tuberculosis (Mtb) coinfection is common and suggested to influence the risk of developing active tuberculosis (TB). It is known that helminths in contrast to TB induce a strong Th2 response in the host. However, the direct impact of helminth antigen exposure on host immunity against TB is largely unknown. Our aim was to explore the effects of helminth antigen exposure on the early immune control of Mtb in monocytes and macrophages. Ascaris lumbricoides (ASC) and Schistosoma mansoni (SM) protein antigens were used to study the immediate effect of helminth antigen exposure in monocytes, on monocyte-to-macrophage differentiation, or mature macrophages, in the control of virulent Mtb H37Rv. Pre-exposure of peripheral blood mononuclear cells reduced Mtb growth in monocytes, especially with SM, but no Th1/Th2 cytokines or activation markers indicated involvement of T cells. Monocytes exposed before maturing into macrophages reduced Mtb growth in macrophages (ASC), and pre-exposure of mature macrophages reduced (ASC) or kept Mtb growth at control levels (SM). This in vitro model shows how helminth infection directly affects the monocyte-macrophage axis at an early stage before cell-mediated immunity develops. During acute helminth coinfection or when helminth antigen concentration is elevated at the site of Mtb infection, these helminths provide an enhanced control and killing of Mtb owing to the direct stimulatory effect of helminth antigens on phagocytic cells.


Assuntos
Antígenos de Helmintos/farmacologia , Antituberculosos/farmacologia , Extratos Celulares/farmacologia , Macrófagos/imunologia , Monócitos/imunologia , Mycobacterium tuberculosis/fisiologia , Células Th1/imunologia , Células Th2/imunologia , Tuberculose/imunologia , Animais , Ascaris lumbricoides/imunologia , Diferenciação Celular , Células Cultivadas , Humanos , Imunidade Celular , Ativação Linfocitária , Fagocitose , Schistosoma mansoni/imunologia , Equilíbrio Th1-Th2
2.
J Biol Chem ; 285(40): 30389-403, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20558725

RESUMO

Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/2-NF-κB signaling axis. Furthermore, PE_PGRS11 markedly diminished H(2)O(2)-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Mycobacterium tuberculosis/enzimologia , Estresse Oxidativo , Fosfoglicerato Mutase/metabolismo , Alvéolos Pulmonares/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Ciclo-Oxigenase 2/biossíntese , Células Epiteliais/microbiologia , Humanos , Peróxido de Hidrogênio/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , NF-kappa B/genética , NF-kappa B/metabolismo , Oxidantes/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoglicerato Mutase/genética , Fosfoglicerato Mutase/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Alvéolos Pulmonares/microbiologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/metabolismo , Tuberculose/enzimologia , Tuberculose/genética , Tuberculose/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA