Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Soil ; 495(1-2): 43-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313193

RESUMO

Background and aims: Plant Ni uptake in aboveground biomass exceeding concentrations of 1000 µg g-1 in dry weight is defined as Ni hyperaccumulation. Whether hyperaccumulators are capable of mobilizing larger Ni pools than non-accumulators is still debated and rhizosphere processes are still largely unknown. The aim of this study was to investigate rhizosphere processes and possible Ni mobilization by the Ni hyperaccumulator Odontarrhena chalcidica and to test Ni uptake in relation to a soil Ni gradient. Methods: The Ni hyperaccumulator O. chalcidica was grown in a pot experiment on six soils showing a pseudo-total Ni and labile (DTPA-extractable) Ni gradient and on an additional soil showing high pseudo-total but low labile Ni. Soil pore water was sampled to monitor changes in soil solution ionome, pH, and dissolved organic carbon (DOC) along the experiment. Results: Results showed that Ni and Fe concentrations, pH as well as DOC concentrations in pore water were significantly increased by O. chalcidica compared to unplanted soils. A positive correlation between Ni in shoots and pseudo-total concentrations and pH in soil was observed, although plant Ni concentrations did not clearly show the same linear pattern with soil available Ni. Conclusions: This study shows a clear root-induced Ni and Fe mobilization in the rhizosphere of O. chalcidica and suggests a rhizosphere mechanism based on soil alkalinization and exudation of organic ligands. Furthermore, it was demonstrated that soil pH and pseudo-total Ni are better predictors of Ni plant uptake in O. chalcidica than labile soil Ni. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-06161-w.

2.
Plant Physiol Biochem ; 148: 133-141, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31958680

RESUMO

In most non-hyperaccumulating plants, Ni and Zn uptake is negatively correlated with soil pH, however, few studies so far have investigated how pH influences the activity and uptake of Ni and Zn in plants grown in a hydroponic system, which generally allows culture variables to be singularly manipulated. In this study, the non-accumulator Stellaria media (L.) Vill. (Caryophyllaceae) had opposite trends of Ni and Zn uptake along a pH gradient (between 5 and 8 for Zn and between 5 and 6.5 for Ni), when grown in hydroponics. In all treatments, the solution metal concentration was fixed at 0.1 mM Ni or 0.55 mM Zn. Nickel accumulation increased with increasing pH with an average concentration in shoots of 167 µg/gDW at pH 5 and of 250 µg/gDW at pH 6.5. In contrast, Zn accumulation decreased with increasing pH, with an average concentration in shoots varying from 1640 µg/gDW, at pH 5, to 435 µg/gDW at pH 8. Assessment of total polyphenol and flavonoid contents and of antioxidant activity showed that these parameters were positively correlated with Ni or Zn accumulation in S. media shoots, while photosynthetic pigments content and root and shoot biomass were negatively correlated with Ni and Zn accumulation. The study was carried out on five different S. media populations, which did not show differences in relation to the accumulation of metals and synthesis of antioxidant compounds, nonetheless showing a different biomass production under control conditions.


Assuntos
Hidroponia , Níquel , Stellaria , Zinco , Concentração de Íons de Hidrogênio , Níquel/metabolismo , Poluentes do Solo/metabolismo , Stellaria/metabolismo , Zinco/metabolismo
3.
J Environ Manage ; 254: 109798, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31739090

RESUMO

Nickel (Ni) is used in numerous industrial processes, with large amounts of Ni-rich industrial wastes produced, which are largely sent to landfill. Nickel recovery from waste materials that would otherwise be disposed is of particular interest. Nickel phytomining represents a new technology in which hyperaccumulator plants are cultivated on Ni-rich substrates for commercial metal recovery. The aim of this study was to investigate the possibility of Ni transfer from industrial waste into plant biomass, to support recovery processes from bio-ores. Different industrial galvanic sludges (containing 85-150 g kg-1 Ni) were converted into artificial substrates (i.e. technosols) and the Ni hyperaccumulator Odontarrhena chalcidica (formerly Alyssum murale) was cultivated on these Ni-rich matrices. A greenhouse pot experiment was conducted for three months including an ultramafic soil control and testing fertilized (NPK) and unfertilized replicates. The results showed that fertilization was effective in improving plant biomass for all the substrates and that O. chalcidica was capable of viably growing on technosols, producing a comparable biomass to O. chalcidica on the control (ultramafic soil). On all technosols, O. chalcidica achieved Ni shoot concentrations of more than >1000 mg Ni kg -1 and maximum Ni uptake was obtained from one of the technosols (26.8 g kg -1 Ni, unfertilized; 20.2 g kg -1 Ni, fertilized). Nickel accumulation from three of the technosols resulted to be comparable with the control ultramafic soil. This study demonstrated the feasibility of transferring Ni from toxic waste into the biomass of Odontarrhena chalcidica and that phytomining from galvanic sludge-derived technosols can provide similar Ni yields as from natural ultramafic soils.


Assuntos
Brassicaceae , Poluentes do Solo , Biodegradação Ambiental , Resíduos Industriais , Níquel , Esgotos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA